Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh duc Hoang
Xem chi tiết
Lê Minh Ngọc
Xem chi tiết
Minhh Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:34

a) Ta có: MK⊥AD(gt)

CD⊥AD(gt)

Do đó: MK//CD(Định lí 1 từ vuông góc tới song song)

Xét ΔAKM và ΔADC có 

\(\widehat{MAK}\) chung

\(\widehat{AMK}=\widehat{ACD}\)(hai góc so le trong, MK//CD)

Do đó: ΔAKM∼ΔADC(g-g)

Lê Đức Anh
Xem chi tiết
kudo shinichi
16 tháng 4 2019 lúc 16:57

Tự vẽ hình nhé

Tạo hình: lấy điểm T thuộc đường thẳng DC( T không nằm trên đọan DC) sao cho góc DAT = góc BAM

                 lấy điểm H thuộc đường thẳng BC( H không nằm trên đọan BC) sao cho góc BAH = góc DAN.

Bạn tự c/m: \(\hept{\begin{cases}\Delta ATD=\Delta AMB\\\Delta ADN=\Delta ABH\end{cases}\Rightarrow\hept{\begin{cases}AT=AM\\AN=AH\end{cases}}}\) ( 2 cạnh tương ứng )

Tiếp theo c/m \(\hept{\begin{cases}\Delta TAN=\Delta MAN\\\Delta MAN=\Delta MAH\end{cases}\Rightarrow\hept{\begin{cases}\widehat{TNA}=\widehat{MNA}\\\widehat{NMA}=\widehat{HMA}\end{cases}}}\)( 2 góc tương ứng )

Đến đây bạn tự làm nốt nhé

lê bảo quân
Xem chi tiết
Ngô Như Thy Lam
Xem chi tiết
trần
Xem chi tiết
trần
12 tháng 8 2018 lúc 13:56

ai giải được bài này rùi commet bên dưới. Nếu giải đúng mik cho thẻ điện thoại 100k

Limited Edition
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 12:42

a) Xét tứ giác BIEM có 

\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối

\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))

Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)

b) Ta có: ABCD là hình vuông(gt)

nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)

⇔BE là tia phân giác của \(\widehat{ABC}\)

\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{IBE}=45^0\)

Ta có: BIEM là tứ giác nội tiếp(cmt)

nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)

mà \(\widehat{IBE}=45^0\)(cmt)

nên \(\widehat{IME}=45^0\)

Vậy: \(\widehat{IME}=45^0\)

 

THI QUYNH HOA BUI
Xem chi tiết