Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Giang
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 10 2021 lúc 18:33

a) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{199}\left(1+3\right)\)

\(=3.4+3^3.4+3^{199}.4=4\left(3+3^3+...+3^{199}\right)⋮4\)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{198}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{198}.13=13\left(3+3^4+...+3^{198}\right)⋮13\)

Nguyễn Thị Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 23:11

\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)=4\left(1+3^2+...+3^{102}\right)⋮4\)

A không chia hết cho 13 nhé bạn

Nguyen Keo Do
Xem chi tiết
Kiệt Nguyễn
4 tháng 5 2019 lúc 9:37

1. Ta có: \(\left(x-y\right)⋮3\)

\(\Rightarrow\left[5\left(x-y\right)\right]⋮3\)

\(\Rightarrow\left[5x-5y\right]⋮3\)

\(\Rightarrow\left[5x-5y+12y\right]⋮3\)

\(\Rightarrow\left[5x+\left(12y-5y\right)\right]⋮3\)

\(\Rightarrow\left[5x+7y\right]⋮3\left(đpcm\right)\)

T.Ps
4 tháng 5 2019 lúc 9:39

#)Giải :

   \(x-y⋮3\Rightarrow x⋮3\Leftrightarrow y⋮3\)

   Vì \(x⋮3\)và  \(y⋮3\)\(\Rightarrow5x+7y⋮3\)( các số chia hết cho 3 luôn chia hết cho 3 trong trường hợp dù bị nhân lên, các số đó luôn chia hết cho 3 dù bị cộng vào ) 

#)Đó là ý kiến của mk :D, k bít đúng hay sai đâu nhá

      #~Will~be~Pens

Kiệt Nguyễn
4 tháng 5 2019 lúc 9:40

2. +) \(\left(a-b\right)⋮5\)

\(\Rightarrow\left(a-b+5b\right)⋮5\)

\(\Rightarrow\left[a+\left(5b-b\right)\right]⋮5\)

\(\Rightarrow\left(a+4b\right)⋮5\left(đpcm\right)\)

+) Các số còn lại tự nhân rồi CM tương tự

tran khac hap
Xem chi tiết
trần như hoà
Xem chi tiết
Huỳnh Uyên Như
23 tháng 10 2015 lúc 10:50

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

Cao Đức Trọng
4 tháng 8 2021 lúc 8:54
Fikj Hrtui
Khách vãng lai đã xóa
Nguyễn Anh Thư
Xem chi tiết
༺༒༻²ᵏ⁸
7 tháng 11 2021 lúc 7:52

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{59}.3\)

\(A=3\left(2+2^3+...+2^{59}\right)\)

 Vì \(3\left(2+2^3+...+2^{59}\right)⋮3\)

\(\Rightarrow A⋮3\)

Khách vãng lai đã xóa
༺༒༻²ᵏ⁸
7 tháng 11 2021 lúc 7:56

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(A=2.7+2^4.7+...+2^{58}.7\)

\(A=7\left(2+2^4+...+2^{58}\right)\)

Vì \(7\left(2+2^4+...+2^{58}\right)⋮7\)

\(\Rightarrow A⋮7\)

Khách vãng lai đã xóa
Trịnh Thị Minh Ánh
Xem chi tiết
thám tử
1 tháng 10 2017 lúc 12:53

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

Trịnh Như Phương
1 tháng 10 2017 lúc 20:46

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

nguyễn thu phượng
Xem chi tiết
Ashshin HTN
12 tháng 7 2018 lúc 7:42

ai tích mình mình tích lại cho

nguyen hoai nam
1 tháng 3 2020 lúc 20:27

k di

e he he

Khách vãng lai đã xóa
oanh
Xem chi tiết
Minh Hiền
24 tháng 7 2017 lúc 20:52

B = \(3+3^2+3^3+.....+3^{59}+3^{60}\)

   \(=3.\left(1+3\right)+3^3.\left(1+3\right)+....+3^{59}.\left(1+3\right)\)

    \(=3.4+3^3.4+....+3^{59}.4\)

     \(=4.\left(3+3^3+...+3^{59}\right)⋮4\)

Vậy B chia hết cho 4

Còn phần b) bạn cũng nhóm ra như trên nhưng thêm một số để có tổng là 13 

VD : ( 1+3+32)=13 đó 

bạn tự làm theo nha

k mik 

\(\)