\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)=4\left(1+3^2+...+3^{102}\right)⋮4\)
A không chia hết cho 13 nhé bạn
\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)=4\left(1+3^2+...+3^{102}\right)⋮4\)
A không chia hết cho 13 nhé bạn
cho A = 1+3+3^2 + 3^3 + .....+ 3^11 chứng tỏ a chia hết cho 14
cho b = 3^1 + 3^3 + 3^4 +.... + 3^1991 chứng tỏ rằng B chia hết cho 13 , 41
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
a)A=2+2^2+2^3+2^4+...+2^60 chứng tỏ A chia hết cho 3, 7 ,15
b)B=3+3^2+3^3+3^4+...+3^1991 chứng tỏ B chia hết cho 13 và 41
Chứng tỏ :
a) C = 1 + 5 + 5^2 + 5^3 + ... + 5^403 + 5^404 chia hết cho 31.
b) E = 3 + 3^2 + 3^3 + ... + 3^60 vừa chia hết cho 4 , vừa chia hết cho 13.
Bài 1 : Chứng tỏ
a) 2 + 2^2+2^3+2^4+....+2^100 chia hết cho 15
b) 3+3^2+3^3+3^4+...+3^111 chia hết cho 13
Bài 2 : Tìm n thuộc N biết :
a) n+3 chia hết cho n-9
b) n+10 chia hết cho n+3
Cho A = 3+32+33+...+318
a) Chứng tỏ A chia hết cho 4 , cho 13
b) Chứng tỏ A chia hết cho 364
cho A=3+3^2+3^3+...+3^16
a)chứng tỏ A chia hết cho 4
b)Hỏi A có chia hết cho 13 không ?Vì sao?
\(Cho\:A=2^1+2^2+2^3+2^4+...+2^{12}+2^{13}.\:\)Chứng tỏ rằng A chia hết cho 3, cho 7 và 15
\(Cho\:C=3+3^2+3^3+3^4+...+3^9\)Chứng tỏ rằng C chia hết cho 13