tìm x,y
\(\dfrac{1+3y}{12}=\dfrac{a+5x}{5x}=\dfrac{1+7y}{4x}\)
tìm x,y biết \(\dfrac{1+3y}{12}\)=\(\dfrac{1+5y}{5x}\)=\(\dfrac{1+7y}{4x}\)
Lời giải:
Từ $\frac{1+5y}{5x}=\frac{1+7y}{4x}$
$\Rightarrow \frac{1+5y}{5}=\frac{1+7y}{4}$
$\Rightarrow 4(1+5y)=5(1+7y)$
$\Rightarrow 4+20y=5+35y$
$\Rightarrow y=\frac{-1}{15}$
Thay vào điều kiện ban đầu:
$(1+3.\frac{-1}{15}):12=(1+5.\frac{-1}{15}):(5x)$
$\Rightarrow \frac{1}{15}=\frac{2}{15}:x$
$\Rightarrow x=2$
2) Tìm x, y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)(với x, y khác 0)
Tìm x; y
\(\dfrac{3y+1}{12}=\dfrac{5y+2}{5x}=\dfrac{7y+3}{4x}\)
tìm x,y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
Tìm cặp số x;y biết : \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+7y-1-5y}{4x-5x}=\dfrac{2y}{-x}=\dfrac{1+5y-1-3y}{5x-12}=\dfrac{2y}{5x-12}\)
=>\(\dfrac{2y}{-x}=\dfrac{2y}{5x-12}\) với y=0 thay vào không thỏa mãn
nếu y khác 0
=>-x=5x-12
=>x=2. Thay x=2 vào trên ta được
\(\dfrac{1+3y}{12}=\dfrac{2y}{-2}=-y=>1+3y=-12y=>1=-15y=\dfrac{-1}{15}\)
Vậy x=2,y=\(\dfrac{-1}{15}\) thỏa mãn đề bài
Tìm cặp số (x,y)
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
Từ \(\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\Rightarrow\dfrac{4+20y}{20x}=\dfrac{5+35y}{20x}\)
\(\Rightarrow4+20y=5+35y\)
\(4-5=35y-20y\)
\(\Rightarrow15y=-1\)
\(\Rightarrow y=\dfrac{-1}{15}\)
Thay \(y=\dfrac{-1}{15}\) vào biểu thức ban đầu, ta được :
\(\dfrac{1+3\dfrac{-1}{15}}{12}=\dfrac{1+5\dfrac{-1}{15}}{5x}\)
\(\dfrac{\dfrac{4}{5}}{12}=\dfrac{\dfrac{2}{3}}{5x}\)
\(\Rightarrow12\dfrac{2}{3}=x\dfrac{4}{5}\)
\(x=12\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{38}{3}\cdot\dfrac{5}{4}=\dfrac{95}{6}\)
Vậy ...
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{5+15y}{60}=\dfrac{3+15y}{15x}=\dfrac{2}{60-15x}\)
\(\dfrac{1+3y}{12}=\dfrac{1+7y}{4x}=\dfrac{7+21y}{84}=\dfrac{3+21y}{12x}=\dfrac{4}{84-12x}\)
\(\Rightarrow\dfrac{2}{60-15x}=\dfrac{4}{84-12x}\Leftrightarrow168-24x=240-60x\)
\(\Leftrightarrow36x=72\Rightarrow x=2\)
\(\Rightarrow\dfrac{1+3y}{12}=\dfrac{2}{60-15.2}=\dfrac{2}{30}=\dfrac{1}{15}\)
\(\Leftrightarrow15+45y=12\Rightarrow45y=-3\Rightarrow y=\dfrac{-1}{15}\)
Vậy \(\left(x;y\right)=\left(2;\dfrac{-1}{15}\right)\)
5.Tìm x,y biết :
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
\(\dfrac{1+3y}{12}==\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
\(\Rightarrow\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1+7x}{\left(5x-4x\right)}=\dfrac{-2y}{x}\)
\(\Rightarrow\dfrac{\left(1+5y\right)}{5}=-2y\)
Giải ra ta có: \(y=\dfrac{-1}{15}\)
\(\Leftrightarrow x=2\)
\(Tìmx,y,z\\ \dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
Tìm x; y
\(\dfrac{3y+1}{12}=\dfrac{5y+2}{5x}=\dfrac{7y+3}{4x}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3y+1}{12}\)=\(\frac{5y+2}{5x}\)=\(\frac{7y+3}{4x}\)=\(\frac{3y+1+7y+3}{12+4x}\)=\(\frac{4+10y}{12+4x}\)=\(\frac{2\left(2+5y\right)}{2\left(6+2x\right)}\)=\(\frac{2+5y}{6+2x}\)
\(\Leftrightarrow\)\(\frac{2+5y}{6+2x}\)=\(\frac{5y+2}{5x}\)
\(\Leftrightarrow\)6+2x=5x
\(\Leftrightarrow\)6=5x-2x=3x
\(\Leftrightarrow\)x=2
Thay x=2 vào \(\frac{5y+2}{5x}\) và \(\frac{7y+3}{4x}\) ta được:\(\frac{5y+2}{10}\)=\(\frac{7y+3}{8}\)
\(\Leftrightarrow\)8(5y+2)=10(7y+3)
\(\Leftrightarrow\)40y+16=70y+30
\(\Leftrightarrow\)40y-70y=30-16
\(\Leftrightarrow\)-30y=14
\(\Leftrightarrow\)y=\(\frac{-14}{30}\)
Vậy (x,y) là (2,\(\frac{-14}{30}\))