Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn Anh
Xem chi tiết
x Nguyễn Thu Thủy x
Xem chi tiết
6a1 is real
2 tháng 12 2017 lúc 12:19

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Trịnh Quỳnh Nhi
2 tháng 12 2017 lúc 12:20

a. Xét tam giác ABC có BM=MC; AI=IC

=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK

Xét tứ giác AKMI có IM//AK; IM=AK

=> AKMI là hbh

Do AB=AC=> 1/2AB=1/2AC=> AK=AI

Xét hbh AKMI có AK=AI

=> AKMI là hình thoi

b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN

=> AMCN là hbh

Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao

=> AMC=90*

Hbh AMCN có AMC=90*

=> AMCN là hcn

• Xét tam giác ABC có AK=BK; BM=MC

=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC

Xét tứ giác MKIC có KM//IC; KM=IC

=> MKIC là hbh

c. Do AMCN là hcn nên NAM=90*; AN=MC

Từ NAM=90*=> ANvgAM mà BMvgAM

=> AN//BM

Từ AN=MC mà MC=BM => AN=BM

Xét tứ giác ABMN có AN=BM; AN//BM

=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn 

Mà E là trung điểm của AM

=> E là trung điểm của BN

d. Để AMCN là hình vuông thì AC vg MN

Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao

=> AMC vuông cân tại M => ACM=45*=ABM

=> tam giác ABC vuông cân tại A

Nguyen Minh Anh
Xem chi tiết
Trần Văn Bình
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 15:21

a: Xét ΔABC có 

M là trung điểm của BC

I là trung điểm của AC

Do đó: MI là đường trung bình

=>MI//AC và MI=AC/2

=>MI//AK và MI=AK

=>AKMI là hình bình hành

mà AK=AI

nên AKMI là hình thoi

b: Xét tứ giác AMCN có 

I là trung điểm của AC

I là trung điểm của MN

Do đó: AMCN là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCN là hình chữ nhật

Xét ΔABC có 

K là trung điểm của AB

I là trung điểm của AC

Do đó: KI là đường trung bình

=>KI//BC và KI=BC/2

hay KI//MC và KI=MC

=>MKIC là hình bình hành

c: Xét tứ giác ABMN có 

AN//BM

AN=BM

Do đó: ABMN là hình bình hành

Suy ra: Hai đường chéo AM và BN cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của AM

nên E là trung điểm của BN

Game Play
Xem chi tiết
shi nit chi
12 tháng 11 2016 lúc 22:17

sao mk lại

ghét toán hình

  quáGame Play

 

hihi

chúc bn học gioi!

nhaE@@@@

Le Vu Huyen Trang
21 tháng 11 2016 lúc 20:33

mk ko có bít vẽ hình trog đây

Nguyễn Ngọc Hà My
7 tháng 11 2017 lúc 17:47

Chịu nha.Mới có lớp 6 thôi

Linhh Chii
Xem chi tiết
nguyen huong
21 tháng 11 2016 lúc 21:03

a, có t.g ABC cân tại A có AM là đường trung tuyến

-> AM vuông góc với BC

Xet tg AMB

co KA=KB (GT)

-> MK=AK (=1/2AB)(1)

Chứng minh tương tự đối với tg AMC thì MI=AI (2)

lại có AB=AC

->AK=AI(3)

(1);(2);(3) -> AK=KM=MI=IA

-> tứ giác AKMI là hình thoi

nguyen huong
21 tháng 11 2016 lúc 21:08

b, co IA=IC

IM=IN (VI N đối xứng với M qua I)

-> Tứ giác AMCN là hình thoi

Mà AM vuông góc BC (theo a)

-> tứ giác AMCN là hình vuông

Xet tg ABC co KA=KB

IA=IC

-> KI là đường trung bình của tg ABC

-> KI//BC

KI=1/2 BC

Ma MC=1/2MC

-> tu giac KICM la hinh binh hanh

nguyen huong
21 tháng 11 2016 lúc 21:18

d, Có tứ giác AMCN là hình chữ nhật (chứng minh trên)

để AMCN là hình vuông thì

<-> AM=MC

<-> tg AMC cân tại M

ma tg AMC vuong tai M

<-> tg AMC vuong can

<-> goc C=450

mà tg ABC cân tại A

<-> tg ABC vuông cân tại A

Dung Shiny
Xem chi tiết
Cold Gaming TM
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
27 tháng 11 2019 lúc 12:49

 Tự vẽ hình ...

a, Xét tứ giác ANCM có:

AI = CIMI = NI ( đối xứng)

Mà: AC cắt MN tai J

Nên: tứ giác ANCM là hình bình hành

Xét hình bình hành ANCM cógóc AMC = 900

=> hình bình hành ANCM là hình chữ nhật

b, Xét: Tam giác ABC cân tại A có: AM là đường trung tuyến

=> AM là đường cao

\(\widehat{AMB}=\widehat{AMC}=90^0\)

Xét tam giác AMB có góc AMB = 900

MK là đường trung tuyến ứng vs cạnh huyền AB

\(\Rightarrow MK=\frac{1}{2}AB\)(1)

Mà: K là trung điểm của AB

\(\Rightarrow KA=KB=\frac{1}{2}AB\)(2)

Từ (1), (2)=> MK = AK = BK (3)

Chứng minh tương tự ta có : 

\(MI=AI=CI=\frac{1}{2}AC\)(4)

Mà: AB = AC( tam giác ABC cân) (5)

Từ (3), (4),(5)

=> MI = AI = CI = MK = AK = BK

Xét tứ giác AKMI có:AK = KM = MI = AI

=> tứ giác AKMI là hình thoi

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
27 tháng 11 2019 lúc 12:53

c, Ta có : AMCN là HCN

Để AMON là hình vuông thì phải cần thêm điều kiện là MI tia phân giác của góc M 

hc tốt ## 

Khách vãng lai đã xóa
luongthithanhthao
27 tháng 11 2019 lúc 13:33

toan khong hieu

Khách vãng lai đã xóa
vu dang
Xem chi tiết