Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 9 2021 lúc 16:44

\(=x^2\left(x^2+2x+1\right)+x+1\)

\(=x^2\left(x+1\right)^2+x+1\)

\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)

\(=\left(x+1\right)\left(x^3+x^2+1\right)\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 22:43

\(x^4+2x^3+x^2+x+1\)

\(=x^2\left(x+1\right)^2+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x^2+1\right)\)

Đạt Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 9 2021 lúc 11:45

\(x^{m+4}-x^{m+3}-x+1=x^{m+3}\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^{m+3}-1\right)\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 13:40

Ta có: \(x^{m+4}-x^{m+3}-x+1\)

\(=x^{m+3}\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)\left(x^{m+3}-1\right)\)

Đạt Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 9 2021 lúc 10:35

\(x^4-2x^3+2x-1=x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^3-x^2-x+1\right)=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]=\left(x-1\right)^2\left(x^2-1\right)=\left(x-1\right)^3\left(x+1\right)\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 14:23

\(x^4-2x^3+2x-1\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)\)

Đạt Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:12

\(\left(x-5\right)\left(x-1\right)\left(x+3\right)\left(x+7\right)+60\)

\(=\left(x^2+2x-35\right)\left(x^2+2x-3\right)+60\)

\(=\left(x^2+2x\right)^2-38\left(x^2+2x\right)+105+60\)

\(=\left(x^2+2x\right)^2-3\left(x^2+2x\right)-35\left(x^2+2x\right)+165\)

\(=\left(x^2+2x-3\right)\left(x^2+2x-35\right)\)

\(=\left(x+3\right)\left(x-1\right)\left(x+7\right)\left(x-5\right)\)

Binh Hang
Xem chi tiết
Minh Triều
21 tháng 1 2016 lúc 15:14

 

x^5+x^4+1

=x5+x4+x3+x2+x+1-x3-x2-x

=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)

tự xử tiếp

 

Yuu Shinn
21 tháng 1 2016 lúc 15:21

Minh Triều?????

Đạt Nguyễn
Xem chi tiết
👁💧👄💧👁
1 tháng 9 2021 lúc 16:21

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

Emmaly
1 tháng 9 2021 lúc 16:22

\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)

\(=(x+4-1)(x+4+1)(x-1)(x+1)\)

\(=(x+3)(x+5)(x-1)(x+1)\)

Nhan Thanh
1 tháng 9 2021 lúc 16:24

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x^2-1\right)\left(x+3\right)\left(x+5\right)\)

Lan Nhj
Xem chi tiết
Thư Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 11 2021 lúc 12:54

\(3x^2+x-4=3x^2-3x+4x-4=3x\left(x-1\right)+4\left(x-1\right)=\left(3x+4\right)\left(x-1\right)\)

vudinhphuc
Xem chi tiết
Ngyên Akara
30 tháng 9 2015 lúc 9:42

(x+3)(x+4)(x+5)(x+6)-24=[(x+3)(x+6)][(x+4)(x+5)]-24

                                  =(x2+6x+3x+3.6)(x2+5x+4x+5.4)-24

                                  =(x2+9x+18)(x2+9x+20)-24

                                  =(x2+9x+18)(x2+9x+18+2)-24    (*)

đặt x2+9x+18 là t   (1)

(*) trở thành

t(t+2)-24=t2+2t-24=t2-4t+6t-24

                          =(t2-4t)+(6t-24)

                          =t(t-4)+6(t-4)

                          =(t-4)(t+6)           (2)

thay (2) vào (1), ta được:

(x+3)(x+4)(x+5)(x+6)-24=(x2+9x+18-4)(x2+9x+18+6)

                                   =(x2+9x+14)(x2+9x+24)

                                   =(x2+7x+2x+14)(x2+9x+24)

                                   =[(x2+7x)+(2x+14)](x2+9x+24)

                                   =x(x+7)+2(x+7)(x2+9x+24)

                                   =(x+7)(x+2)(x2+9x+24)

 

(mình đã cố gắng giải thật chi tiết và phân tích triệt để nhất có thể rồi. có j sai sót thì góp ý nha!)

Michiel Girl mít ướt
29 tháng 9 2015 lúc 22:08

chả hiểu cái đề -_- 

Trần Đức Thắng
29 tháng 9 2015 lúc 22:10

( x + 3 )( x+ 4 )( x+  5 )( x+  6 ) - 24 

= ( x+ 3 )( x+ 6 )( x+ 4 )( x+ 5 ) - 24

 ( x^2 + 9x + 18 )( x^2 + 9x + 20 ) - 24 

Đặt x^2 + 9x + 19 = a 

= ( a - 1 )( a+ 1 ) - 24

= a^2 - 1 - 24 

= a^2 - 25 

= ( a- 5 )( a+ 5 ) 

= ( x^2 + 9x + 19 - 5 )( x^2 + 9x + 19 + 5 )

= ( x^2 + 9x + 14 )( x^2 + 9x + 24 )