Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
taekook
Xem chi tiết
vi lê
Xem chi tiết
Thái Viết Nam
Xem chi tiết
vi lê
Xem chi tiết
Vũ Đình Thái
11 tháng 1 2021 lúc 19:57

Từ pt (1) ta có: y=ax-2 thế vào pt (2) ta được:

          \(x+a\left(ax-2\right)=3\)

\(\Leftrightarrow x+a^2x-2a=3\)

\(\Leftrightarrow\left(a^2+1\right)x=2a+3\)

\(\Leftrightarrow x=\dfrac{2a+3}{a^2+1}\) (Vì \(a^2+1\ne0\))

\(\Rightarrow y=a\cdot\dfrac{2a+3}{a^2+1}-2=\dfrac{3a-2}{a^2+1}\)

Vậy với mọi a hệ có nghiệm duy nhất là \(\left(x;y\right)=\left(\dfrac{2a+3}{a^2+1};\dfrac{3a-2}{a^2+1}\right)\) 

Bùi Minh Quân
Xem chi tiết
Lizy
Xem chi tiết

1: Thay x=1 và y=0 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}1+a\cdot0=1\\a\cdot1+0=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1=1\left(đúng\right)\\a=2\end{matrix}\right.\)

=>a=2

2: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{a}\ne\dfrac{a}{1}\)

=>\(a^2\ne1\)

=>\(a\notin\left\{1;-1\right\}\)

⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Đoàn Trần Quỳnh Hương
13 tháng 2 2023 lúc 17:35

a. Theo bài ra ta có: \(x^2+x-2=0\)

\(\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=-\left(-2\right)+2=4\\y=-1+2=1\end{matrix}\right.\)

Vậy tọa độ giao điểm cần tìm là: \(\left(-2;4\right)\)\(\left(1:1\right)\)

b. Thay x = 2 ; y = -1 vào hpt ta có: 

\(\left\{{}\begin{matrix}8-a=b\\2+b=a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-a-b=-8\\-a+b=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=3\end{matrix}\right.\)

Trần Mun
Xem chi tiết

a: Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-y=1\\2x+y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=5\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=x-1=\dfrac{5}{3}-1=\dfrac{2}{3}\end{matrix}\right.\)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)

=>\(m^2\ne-2\)(luôn đúng)

\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-1\\2x+m\left(mx-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-1\\x\left(m^2+2\right)=m+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{m\left(m+4\right)}{m^2+2}-1=\dfrac{m^2+4m-m^2-2}{m^2+2}=\dfrac{4m-2}{m^2+2}\end{matrix}\right.\)

x+y=2

=>\(\dfrac{m+4+4m-2}{m^2+2}=2\)

=>\(2m^2+4=5m+2\)

=>\(2m^2-5m+2=0\)

=>(2m-1)(m-2)=0

=>\(\left[{}\begin{matrix}2m-1=0\\m-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=2\end{matrix}\right.\)

@GiaSu0099
31 tháng 1 lúc 20:58

 

 

Vũ Thanh Lương
Xem chi tiết