Cho tam giác ABC có góc A = 40\(^0\) , AB = AC . Gọi M là trung điểm của BC
a. Chứng minh hai tam giác ABM và ACM bằng nhau
b. Chứng minh AM vuông góc với BC
c. Tính các góc của tam giác ABM và tam giác AMC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
a) Chứng minh hai tam giác ABM và ACM bằng nhau.
b) Chứng minh AM vuông góc BC.
c) Chứng minh AM là phân giác của góc A
: Ch o tam giác ABC có AB=AC ,gọi AM là tia phân giác của góc BAC.
a) Chứng minh 2 tam giác ABM&ACM bằng nhau
b) AM là phân giác góc A
c) Chứng minh AM vuông góc với BC
d) Chứng minh M là trung điểm của BC.
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: ΔABM=ΔACM
=>góc AMB=góc AMC=180/2=90 độ
=>AM vuông góc BC
d: ΔABM=ΔACM
=>BM=CM
=>Mlà trung điểm của BC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC .Trên AB lấy điểm D, trên AC lấy điểm E sao cho AD = AE
a) chứng minh hai tam giác ABM và ACM bằng nhau
b) chứng minh AM và BC vuông góc với nhau
c) chứng minh hai tam giác ADM và AEM bằng nhau
d) tính số đo góc A biết số đo góc B = 53 Độ
Cho tam giác ABC có AB = AC, gọi M là trung điểm của cạnh BC
a) Chứng minh rằng 2 tam giác ABM và ACM bằng nhau
b) Chứng minh rằng AM vuông góc với BC
a, xét tam giác ABM và tam giác ACM có:
AB=AC
Góc B= góc C
BM=CM
=> tam giác ABM=tam giác ACM (c.g.c)
b, Xét tam giác ABC cân tại A có AM là đường trung tuyến => AM đồng thời là đường cao hay AM vuông góc với BC
a) Vì M là trung điểm của BC nên BM = BC
Xét 2 tam giác ABM và ACM có:
AM là cạnh chung (1)
BM=CM (2)
AB=AC (3)
Từ (1), (2),(3) => Tam giác ABM = tam giác ACM
b) Vì AB=AC => ABC là tam giác cân mà AM là đường trung tuyến nên:
=> AM cũng là đường cao hay AM vuông góc với BC
Cho tam giác ABC có AB=AC gọi M là trung điểm của cạnh BC
a) chứng minh 2 tam giác ABM và ACM bằng nhau
b chứng minh vuông góc vs BC
c AM là phân giác góc A
Cho tam giác ABC có AB=AC , gọi M là trung điểm của cạnh BC
a)Chứng minh tam giác ABM và tam giác ACM bằng nhau
b)Chứng minh AM vuông góc với BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Bài 1 : Cho tam giác ABC có AB=AC ,gọi M là trung điểm cua cạnh BC a. Chứng minh 2 tam giác ABM&ACM bằng nhau b. Chứng minh AM vuông góc với BC
a) Xét tam giác ABM và ACM
AB=AC
^B=^C
MB=MC
=>2 tam giác = nhau(c.g.c)
b) vì tam giác ABM=ACM
=>^M1=^M2=90 độ
=>AM vuông góc với BC
Cho tam giác ABC có AB = AC , M là trung điểm của BC.
a ) Chứng minh : Tam giác ABM bằng tam giác ACM .
b) Chứng minh : AM là tia phân giác của góc BAC.
c ) Chứng minh : AM vuông góc với BC tại M. giúp mik vs
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (giả thiết)
\(AM\) là cạnh chung
\(BM=CM\) (giả thiết)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
Cho tam giác ABC có AB=AC.Điểm M là trung điểm của BC
a,Chứng minh tam giác ABM bằng tam giác ACM
b,Chứng minh AM vuông góc với BC
c,Chứng minh AM là tia phân giác của góc bAc
Cho tam giác ABC cân tại A , M là trung điểm của BC a) chứng minh tam giác ABm và tam giác ACM bằng nhau b) kẻ MH vuông góc với AB ( H € AB) , MK vuông góc với AC ( K € AC) . Chứng minh HK song song với BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AH=AK
Xét ΔACB co AH/AB=AK/AC
nên HK//BC