\(B=-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\) lớn nhất
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
Tìm các giá trị lớn nhất của biểu thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x-5\right|+\left|4y+5\right|+8}\)
b. \(F=-6+\frac{24}{2.\left|x-2y\right|+3.\left|2x+1\right|+6}\)
Tìm Giá Trị Lớn Nhất Của Các Biểu Thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
b. \(F=-6+\frac{24}{2.\left|x-2y\right|+3.\left|2x+1\right|+6}\)
B4:Giải hệ pt:
a)\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;0\right\}\)
b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;1\right\}\)
d.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b\) ta có hệ pt:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{12}\\8a+15b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a+8b=\dfrac{2}{3}\\8a+15b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}7b=\dfrac{1}{3}\\8a+15b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a+15\times\dfrac{1}{21}=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a+\dfrac{5}{7}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a=\dfrac{2}{7}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a=\dfrac{1}{28}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{21}\\\dfrac{1}{x}=\dfrac{1}{28}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=21\\x=28\end{matrix}\right.\)
vậy hệ pt có ndn\(\left\{28;21\right\}\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
Nhờ mn giúp mik với ạ
Tìm GTNN
A= \(\left(x-3y\right)^2+\left(2x-1\right)^4\)
B= \(\left|x-2\right|+\left|3x-2y\right|-4\)
C= \(\dfrac{-4}{\left|x+1\right|\left|y-3\right|+2}\)
D=\(\left|x-5\right|+\left|x-1\right|+7\)