CMR: 2x-2x\(^2\)-3 <0 Với mọi số thực x.
a. CMR: Với mọi tham số m phương trình \(\left(1-m^2\right)x^3-6x=1\) luôn có nghiệm
b. CMR PT \(x^3+2x=4+3\sqrt{3-2x}\) có đúng 1 nghiệm
c. CMR PT \(\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5=0\) có nghiệm với mọi m
a.
- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
- Với \(-1< m< 1\Rightarrow1-m^2< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Vậy pt đã cho có nghiệm với mọi m
b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được
c.
Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
\(f\left(2\right)=4-5=-1< 0\)
\(f\left(3\right)=6-5=1>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m
Hay pt đã cho luôn luôn có nghiệm
Cho `2x^3=3y^3=4z^3`
`CMR:(\root{3}{2x^2+3y^2+4z^2})/(\root{3}{2}+\root{3}{3}+\root{3}{4})=1`
Giúp!
Đề bài sai/thiếu
Ví dụ: \(x=y=z=0\) thì \(2x^3=3y^3=4z^3\) nhưng \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=0\)
Nếu thêm điều kiện \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (với \(x;y;z\ne0\))
Đặt \(2x^3=3y^3=4z^3=k^3\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{\sqrt[3]{2}}\\y=\dfrac{k}{\sqrt[3]{3}}\\z=\dfrac{k}{\sqrt[3]{4}}\end{matrix}\right.\)
Thay vào \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Rightarrow\dfrac{\sqrt[3]{2}}{k}+\dfrac{\sqrt[3]{3}}{k}+\dfrac{\sqrt[3]{4}}{k}=1\)
\(\Rightarrow\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}=k\)
Lại có:
\(\left\{{}\begin{matrix}2x^3=k^3\Rightarrow2x^2=\dfrac{k^3}{x}\\3y^3=k^3\Rightarrow3y^2=\dfrac{k^3}{y}\\4z^3=k^3\Rightarrow4z^2=\dfrac{k^3}{z}\end{matrix}\right.\) \(\Rightarrow2x^2+3y^2+4z^2=k^3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=k^3\)
\(\Rightarrow\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=\dfrac{\sqrt[3]{k^3}}{k}=1\)
CMR:
\(\left(\frac{X^2-2X}{2X^2-8}-\frac{2X^2}{8-4X+2X^2-3X^3}\right).\left(1-\frac{1}{X}-\frac{2}{X^2}\right)=\frac{X+1}{2X}\)
Cho \(A=\left(\dfrac{3}{2x}-\dfrac{3x-3}{1-2x}+\dfrac{2x^2+1}{4x^2-2x}\right).\dfrac{x}{2x+1}\). CMR: Khi biểu thức A xác định thì giá trị của A ko phụ thuộc vào giá trị của x
CMR: Các biểu thức sau có giá trị không phụ thuộc vào biến:
a) A=2x(x-3)-(2x-2)(x-2)
b) B=(3x-5)(2x+11)-(2x+3)(3x+7)
a) A = 2x(x - 3) - (2x - 2)(x - 2)
A = 2x2 - 6x - 2x2 + 4x + 2x - 4
A = (2x2 - 2x2) + (-6x + 4x + 2x) - 4
A = -4
Vậy: biểu thức có giá trị không phụ thuộc vào biến
b) B = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
B = 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
B = (6x2 - 6x2) + (33x - 14x - 9x) + (-55 - 21)
B = -76
Vậy: biểu thức có giá trị không phụ thuộc vào biến
a) A = 2x(x - 3) - (2x - 2)(x - 2)
A = 2x2 - 6x - 2x2 + 4x + 2x - 4
A = -4
=> biểu thức A có giá trị ko phụ thuộc vào biến
b) B = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
B = 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
B = -76
=> Biểu thức B có giá trị ko phụ thuộc vào biến
a) A = 2x(x-3)-(2x-2)(x-2)
A= 2x2 - 6x- 2x2+4x+2x-4x-4
A= (-4)
=> A ko phụ thuộc vào giá trị của biến
B= (3x-5)(2x+11)-(2x+3)(3x+7)
B= 6x2 + 33x - 10x - 55 --6x2 - 14x - 9x - 21
B= 0 + 0 - 76
=> B = (-76)
=> B ko phụ thuộc vào giá trị của biến
cho x, y >0 . cmr (2x^2+3y^2)/(2x^3+3y^3)+(2y^2+3x^2)/(2y^3+3x^3)<=4/x+y
cmr 2x4+1lon hon hoac bang 2x3+x2
Cmr: x^4 +2x^3-x^2-2x chia hết cho 24 với mọi x thuộc R
\(x^4+2x^3-x^2-2x\)
\(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(2x^2-2x\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+2x\right)\)
\(=\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)
Bạn xét TRường hợp, chứng minh được tích 3 số nguyên liên tiếp chia hết cho 3, tích 4 số nguyên liên tiếp chia hết cho 8
Từ đó suy ra chia hết cho 24
CMR :
\(\frac{4x^2-4xy+y^2}{y^3-6y^2x+12yx^2-8x^3}=\frac{-1}{2x-y}\)
Ta có: \(VT=\frac{4x^2-4xy+y^2}{y^3-6y^2x+12ỹ^2-8x^3}\)
\(=\frac{\left(2x-y\right)^2}{\left(y-2x\right)^3}=-\frac{\left(2x-y\right)^2}{\left(2x-y\right)^3}=\frac{-1}{2x-y}=VP\)(đpcm)