Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yeutoanhoc

Cho `2x^3=3y^3=4z^3`

`CMR:(\root{3}{2x^2+3y^2+4z^2})/(\root{3}{2}+\root{3}{3}+\root{3}{4})=1`

Giúp!

Nguyễn Việt Lâm
11 tháng 5 2021 lúc 21:06

Đề bài sai/thiếu

Ví dụ: \(x=y=z=0\) thì \(2x^3=3y^3=4z^3\) nhưng \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=0\)

Nguyễn Việt Lâm
11 tháng 5 2021 lúc 21:19

Nếu thêm điều kiện \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (với \(x;y;z\ne0\))

Đặt \(2x^3=3y^3=4z^3=k^3\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{\sqrt[3]{2}}\\y=\dfrac{k}{\sqrt[3]{3}}\\z=\dfrac{k}{\sqrt[3]{4}}\end{matrix}\right.\)

Thay vào \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Rightarrow\dfrac{\sqrt[3]{2}}{k}+\dfrac{\sqrt[3]{3}}{k}+\dfrac{\sqrt[3]{4}}{k}=1\)

\(\Rightarrow\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}=k\) 

Lại có:

\(\left\{{}\begin{matrix}2x^3=k^3\Rightarrow2x^2=\dfrac{k^3}{x}\\3y^3=k^3\Rightarrow3y^2=\dfrac{k^3}{y}\\4z^3=k^3\Rightarrow4z^2=\dfrac{k^3}{z}\end{matrix}\right.\) \(\Rightarrow2x^2+3y^2+4z^2=k^3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=k^3\)

\(\Rightarrow\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=\dfrac{\sqrt[3]{k^3}}{k}=1\)


Các câu hỏi tương tự
Anh Thư
Xem chi tiết
Nguyễn Mạnh Cường
Xem chi tiết
MN Hướng Dương
Xem chi tiết
Hắc Thiên
Xem chi tiết
Nguyễn Ngọc Uyên Như
Xem chi tiết
Vũ Ngọc Hải My
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Thuy Chu
Xem chi tiết
kietdeptrai
Xem chi tiết