tìm x, y, z biết:
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
Bài 5: Tìm x;y;z biết: |3x-5|+\(\left(2y+5\right)^{208}\)\(\left(4z-3\right)^{20}\)≤0
Sửa đề \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\le0\)
Mà \(\left|3x-5\right|\ge0\);\(\left(2y+5\right)^{208}\ge0;\left(4x-3\right)^{20}\ge0\)
Do đó \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
tìm x,y,z,biết:\(|3x-5+(2y+5)^{2018}+\left(4z-3\right)^{2020}|\le0\)
Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)
Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.
=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.
Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)
<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
Vậy...
thầy mình cho đè kia cơ
Nếu đề đúng là như vậy thì làm như sau :
Bài giải
Vì : \(\left|3x-5+\left(2y+5\right)^{2018}+\left(4z-3\right)^{2020}\right|\ge0\)
\(\Rightarrow\) Chỉ xảy ra trường hợp :
\(\left(3x-5\right)+\left(2y+5\right)^{2018}+\left(4z-3\right)^{2020}=0\)
Mà \(\hept{\begin{cases}\left(2y+5\right)^{2018}\ge0\\\left(4z-3\right)^{2020}\ge0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x-5=0\\\left(2y+5\right)^{2018}=0\\\left(4z-3\right)^{2020}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
\(\Rightarrow\text{ }x=\frac{5}{3}\text{ ; }y=-\frac{5}{2}\text{ ; }z=\frac{3}{4}\)
tìm x,y,z biết:
/3x-5/+\(\left(2y+5\right)^{208}\) +\(\left(4z-3\right)^{20}\) < hoặc= 0
giúp mk với 8h mk đi học rồi
Bài 1: Tìm x, y, z biết
\(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\)
Bài 2: Viết các biểu thức sau dưới dạng thu gọn
A = |x - 1| + x + 3
B = 2x - |2x + 3|
B1:
Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)
Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:
\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
B2:
a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)
Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)
b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)
Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)
Bài 1.
Ta có \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|2y-\frac{1}{3}\right|\ge0\forall y\\\left|4z+5\right|\ge0\forall z\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\forall x,y,z\)
Kết hợp với đề bài => Chỉ xảy ra trường hợp \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\2y-\frac{1}{3}=0\\4z+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
Bài 2.
A = | x - 1 | + x + 3
Với x < 1 => A = -( x - 1 ) + x + 3 = -x + 1 + x + 3 = 4
Với x ≥ 1 => A = ( x - 1 ) + x + 3 = x - 1 + x + 3 = 2x + 2
B = 2x - | 2x + 3 |
Với x < -3/2 => B = 2x - -( 2x + 3 ) = 2x + ( 2x + 3 ) = 2x + 2x + 3 = 4x + 3
Với x ≥ -3/2 => B = 2x + -( 2x + 3 ) = 2x - ( 2x + 3 ) = 2x - 2x - 3 = -3
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\le0\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)
Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)
\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)
\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
a,\(\left|3x-4\right|+\left|3y+5\right|=0\) b,\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\) c,\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
d,\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\) e,\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\)
Giups mình giải bài tìm x,y,z này nhé!!! Cảm ơn nhiều ạ!!!
a, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có :
\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)
b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có :
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)
c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)
d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có :
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)
e, Câu cuối bn làm tương tự như câu a, b, c nhé!
Tìm x, y , z
\(\left(3x-2y\right)^2+\left(3y-4z\right)^4+\left(x^2+y^2+z^2-1\right)=0\)
\(\left(3x-2y\right)^2+\left(3y-4z\right)^4+\left(x^2+y^2+z^2-1\right)=0\)
Vì \(\left(3x-2y\right)^2\ge0;\left(3y-4x\right)^4\ge0\)
\(\Rightarrow VT=0\Leftrightarrow3x-2y=0;3y-4z=0;x^2+y^2+z^2-1=0\)
....... ( típ theo tự làm nhé eiu)
Tìm x,y,z
\(\left|x-3\right|+\left|y-2x\right|+\left|2z-x+y\right|=0\)
\(\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)
a) \(\Leftrightarrow\left|x-3\right|=0;\left|y-2x\right|=0;\left|2z-x+y\right|=0\)
\(\Leftrightarrow x=3;y=2x;2z=-y+x\)
Ta có : y = 2x => y = 2 . 3 = 6
và 2z = -y + x => 2z = -6 + 3 = -3 => z = \(-\frac{3}{2}\)
b) \(\Leftrightarrow\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|=0\) (vĩ mỗi số hạng trong tổng đều lớn hơn hoặc bằng 0)
\(\Leftrightarrow\left|x-y\right|=0;\left|2y+x-\frac{1}{2}\right|=0;\left|x+y+z\right|=0\)
\(\Leftrightarrow x=y;2y+x=\frac{1}{2};x+y=-z\)
Vì x = y nên \(2y+x=3y=\frac{1}{2}\Rightarrow x=y=\frac{1}{2}:3=\frac{1}{6}\)
và \(-z=x+y=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\Rightarrow z=-\frac{1}{3}\)