Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê bảo ngọc

tìm x, y, z biết:
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)

Nguyễn Thị Bích Thủy
9 tháng 11 2017 lúc 19:44

\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
Ta có:
\(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)

\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-5\right|=0\\\left(2y+5\right)^{208}=0 \\\left(4z-3\right)^{20}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=5\\2y=-5\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{5}{3};y=-\dfrac{5}{2};z=\dfrac{3}{4}\)


Các câu hỏi tương tự
Lê Thị Ngọc Sương
Xem chi tiết
maivananh
Xem chi tiết
Mai Chi Lê Vũ
Xem chi tiết
lam chanh anh
Xem chi tiết
Khong Biet
Xem chi tiết
Nguyễn Thanh Hằng
Xem chi tiết
Yến Mạc
Xem chi tiết
Thị Phương Thảo Trần
Xem chi tiết
Trâm Trương
Xem chi tiết