cho tam giác ABC nhọn
BC=a, AC=b, AB=c
CM: sin A/2 ≤ a/2√(bc)
cho tam giác ABC nhọn
BC=a, AC=b, AB=c
CM: sin A/2 ≤ a/2√(bc)
Cho tam giác ABC có 3 góc nhọn có BC=a, AC=b, AB=c. Vẽ 2 đường cao AD, CE của tam giác ABC.Chứng minh
a/sin A = b/sin B = c/sinC
cho tam giác ABC nhọn có BC=a; AC=b; AB=c;CMR: a/sinA=b/sinB=c/sin C
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : \(sinA=\frac{BK}{AB}\) ; \(sinB=\frac{AH}{AB}\) ; \(sinC=\frac{AH}{AC}\)
\(\Rightarrow\frac{AB}{sinC}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\) ; \(\frac{AC}{sinB}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{c}{sinC}=\frac{b}{sinB}\) (1)
Lại có : \(BK=sinC.BC\Rightarrow\frac{BC}{sinA}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{sinC.BC}=\frac{AB}{sinC}\)
\(\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\) (2)
Từ (1) và (2) ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\) (Đpcm)
Tam giác ABC nhọn: BC=a; AC=b;AB=c. Chứng minh: \(\sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\)
Tam giác ABC nhọn, AC=b, AB=c, BC=a. CM: \(\sin\frac{A}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC nhọn : BC= a; AB= b ; AC= b. Chứng minh
SABC= 1/2 b.c. sin A
= 1/2 a.c. sin B
=1/2 a.b. sin C
kẻ đường cao AH. Ah= h
khi đó: tam giác ACH vuông tại H có
sin C = h/b
=> a.b.sin C= a.h
=> 1/2 a.b. sin C = a.h/2= SABC
Cho tam giác ABC nhọn,Đặt AC=b,AB=c,Bc=a.Cm:
a) Sin A/2<=a/b+c
b) Sin A/2. Sin B/2. Sin C/2<=1/8
xin lỗi mk mới hc lp 7 ko thể giúp bn đc !
Cho tam giác ABC nhọn với AB = c , AC = b , BC = a . Chứng minh :
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Kẽ đường cao AH
\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)
\(\Rightarrow AH=c.sinB=b.sinC\)
\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)
Tương tự ta cũng có
\(\frac{b}{sinB}=\frac{a}{sinA}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
cho tam giác ABC nhọn, BC=a, AC=b, AB=c
chứng minh:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Ta có:
\(\frac{a}{sinA}=\frac{a}{\frac{h_b}{c}}=\frac{ac}{h_b}=\frac{ac}{\frac{2S}{b}}=\frac{abc}{S}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{sinB}=\frac{abc}{2S}\left(2\right)\\\frac{c}{sinC}=\frac{abc}{2S}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Lạnh lùng boy không giải được thì nói té đi còn bày đặt mình mình giải cho