Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : \(sinA=\frac{BK}{AB}\) ; \(sinB=\frac{AH}{AB}\) ; \(sinC=\frac{AH}{AC}\)
\(\Rightarrow\frac{AB}{sinC}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\) ; \(\frac{AC}{sinB}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{c}{sinC}=\frac{b}{sinB}\) (1)
Lại có : \(BK=sinC.BC\Rightarrow\frac{BC}{sinA}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{sinC.BC}=\frac{AB}{sinC}\)
\(\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\) (2)
Từ (1) và (2) ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\) (Đpcm)