Cho hàm số f(x) = \(\dfrac{x^2-2x+1}{x^2-2x+2}\) ( x thuộc R)
a, Chứng minh rằng với 2 giá trị x1 ; x2 tùy ý của x sao cho 1 \(\le\)x1 < x2 thì f(x1) < f(x2)
b, Với giá trị nào của x thì \(\dfrac{1}{2}\) < f(x) < \(\dfrac{3}{4}\)
Cho F=\(\dfrac{1}{x^2-2x+1}-\left(\dfrac{x}{x^2-1}-\dfrac{1}{x\left(x^2-1\right)}\right)\):\(\dfrac{x^2-2x+1}{x+x^3}\)
a) Rút gọn F
b) Với giá trị của với x là nghiệm của phương trình (x-2)(x+1)=0
c) Tính giá trị của x để F =-1
d) Chứng minh rằng F<0
a) Cho biểu thức E = x + 1 x 2 x 2 + 1 x 2 + 2 x + 1 1 x + 1 .
Chứng minh rằng: Giá trị của biểu thức E luôn bằng 1 với mọi giá trị x ≠ 0 và x ≠ - 1
b) Cho biểu thức F = x + 1 2 x − 2 + 3 x 2 − 1 − x + 3 2 x + 2 . 4 x 2 − 4 5 .
Chứng minh rằng với những giá trị của x hàm F xác định thì giá trị của F không phụ thuộc vào x.
a) Rút gọn E Þ đpcm.
b) Điều kiện xác định E là: x ≠ ± 1
Rút gọn F ta thu được F = 4 Þ đpcm
Cho hàm số f(x) thỏa mãn f ( 2 ) = - 2 9 và f ' ( x ) = 2 x [ f ( x ) ] 2 với mọi giá trị x thuộc R Giá trị của f(1) bằng
A. - 35 36
B. - 2 3
C. - 19 36
D. - 2 15
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
Cho các hàm số :
(x)=-x2 + 2x -1
g(y) = y2 + y + 1
a) Tính f(\(\dfrac{-1}{3}\) ) ; g(\(\dfrac{-1}{2}\) ) ; g(0,1)
b ) Chứng minh rằng không có giá trị nào của x để giá trị của hàm số f > 0
c) Chứng minh không có giá trị nào của y để hàm số g(y) nhận giá trị bằng 0
Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF
Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = ( x - 1 ) 2 ( x 2 - 2 x ) với mọi x thuộc R. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = f ( x 2 - 8 x + m ) có 5 điểm cực trị?
A. 15
B. 17
C. 16.
D. 18
Cho hàm số y =f(x) =ax. Chứng minh rằng:
a)Với các số x1; x2là hai giá trị của x ta có y1; y2là hai giá trị tương ứng của y thì f(x1+ x2) = f(x1) + f(2)
b) Với k ∈Q thì f(kx) = k.f(x) với mọi x ∈Q
Cho hàm số y = f(x) = 2x2 + 2009. Chứng tỏ rằng f(a) = f(-a) với mọi a thuộc R