Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mai Anh
Xem chi tiết
Nguyễn Việt Hoàng
31 tháng 10 2019 lúc 21:42

Áp dụng TC của dãy tỉ số bằng nhau ,ta có :

\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}\)

\(=\frac{3a+3b+3c+3d}{a+b+c+d}=3\)

Vậy.....................

Tui nghĩ zậy , ko hiểu đề cho lém!

Khách vãng lai đã xóa
Nguyễn Phương Quỳnh Chi
Xem chi tiết
coolkid
31 tháng 10 2019 lúc 21:36

https://olm.vn/hoi-dap/detail/227779138187.html bạn tham khảo

Khách vãng lai đã xóa
Lê Thị Trà MI
Xem chi tiết
Lê Thị Mỹ Hằng
Xem chi tiết
Phương Trình Hai Ẩn
31 tháng 5 2017 lúc 13:44

Trừ 1 ở mỗi phân số ta đuợc :

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu : a+b+c+d\(\ne\)

=> a=b=c=d

=> \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Nếu a+b+c+d=0 

=> +) a+b=-(c+a)

+) b+c=-(d+a)

+) c+d=-(a+b)

+) d+a=-(b+c)

=> M=(-1)+(-1)+(-1)+(-1)=-4

Cỏ dại
Xem chi tiết
tth
11 tháng 10 2017 lúc 18:05

Theo tính chất tỉ dãy số bằng nhau thì:

\(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}=1\)

\(\Leftrightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

\(\Rightarrow M\Leftrightarrow1+1+1+1=4\)

Ps: Cách mình nhanh hơn nè!

phanhuyminh
11 tháng 10 2017 lúc 15:35

bạn trừ đi một rồi áp dụng tính chất dãy tỉ số bằng nhau nhé

alibaba nguyễn
11 tháng 10 2017 lúc 16:16

Ta có:

\(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}\)

\(=\frac{2\left(b+c\right)}{d+a}=\frac{2\left(a+b\right)}{c+d}=\frac{2\left(c+d\right)}{a+b}=\frac{2\left(d+a\right)}{b+c}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\frac{b+c}{d+a}=\frac{a+b}{c+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

\(\Rightarrow M=\frac{b+c}{d+a}+\frac{a+b}{c+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Jack Yasuo
Xem chi tiết
Fenny
Xem chi tiết
Dao Van Thinh
21 tháng 10 2020 lúc 23:32

chứng minh a=b=c=d

Khách vãng lai đã xóa
lê thị bích ngọc
23 tháng 10 2020 lúc 4:05

mình nghĩ đề phải là P=\(\frac{a+b}{c+a}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{d+a}\)+\(\frac{d+a}{b+c}\)

P=\(\frac{a+b}{c+a}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{d+b}\)+\(\frac{d+a}{b+c}\)

=>P= \(\frac{a+b+b+c+c+d+d+a}{c+a+d+a+d+b+b+c}\)=\(\frac{2a+2b+2c}{2a+2b+2c}\)=\(\frac{2\left(a+b+c\right)}{2\left(a+b+c\right)}\)=1

Khách vãng lai đã xóa
Dao Van Thinh
23 tháng 10 2020 lúc 6:46

Sao lại đi cộng tử với tử mẫu với mẫu thế này?

Khách vãng lai đã xóa
Măm Măm
Xem chi tiết
nguyenthanhthuy
5 tháng 12 2017 lúc 23:48

ta có:\(\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{a+d+a-b}{b}=\dfrac{d+a+b-c}{c}\)\(=>\dfrac{a+b+c-d}{d}+2=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2\)\(=>\dfrac{a+b+c+d}{d}=\dfrac{b+c+d+a}{a}=\dfrac{c+d+a+b}{b}=\dfrac{d+a+b+c}{c}\)Nếu a+b+c+d=0=>a+b=-(c+d)

b+c=-(a+d)

c+d=-(a+b)

a+d=-(b+c)

thay vào bt M ta có:\(\dfrac{-\left(c+d\right)}{c+d}=\dfrac{-\left(d+a\right)}{d+a}=\dfrac{-\left(a+b\right)}{a+b}=\dfrac{-\left(b+c\right)}{b+c}\)=>-1-1-1-1=-4

Nếu a+b+c+d≠0

=>a=b=c=d thì lúc đó M=1+1+1+1=4

Vậy M=4 hoặc M=-4

Ngưu Kim
Xem chi tiết
Akai Haruma
1 tháng 11 2019 lúc 1:12

Lời giải:

Nếu $a+b+c+d=0$ thì:

$a+b+c=-d; b+c+d=-a; c+d+a=-b; d+a+b=-c$

$\Rightarrow \frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=-1$

Nếu $a+b+c+d\neq 0$ thì:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}=\frac{3(a+b+c+d)}{a+b+c+d}=3\)

Vậy giá trị của các tỉ số trên có thể bằng $-1$ hoặc $3$

Khách vãng lai đã xóa