Không làm tính chia hãy tìm số dư trong phép chia
f( x) : g(x) với f(x) = 3x^3 + 4x^2 - 2x + 7
g(x) = x +2
Bài 2 : [Đặt tính chia cột dọc ( làm ra vỏe chụp càng tốt ạ )] Thực hiện phép chia f(x) cho g(x) để tìm thương và dư :
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3;g(x)= 1+2x-4x
OLM chỉ có phần chụp ảnh cho CTV
Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x
Bài 1 ( Nếu k làm đc hàng ngang thì đặt cột dọc làm cx đc ạ )
a) ( 2x^4-5x^2+x^3-3-3x):(x^2-3)
b)(2x^3+5x^2+3):(2x^2-x+1)
c) (2x+4y)^2 : (x+2y)-(9x^3-12x^2-3x):(-3x)-3(x^2+3)
Bài 2 : [Đặt tính chia cột dọc ( làm ra vỏe chụp càng tốt ạ )] Thực hiện phép chia f(x) cho g(x) để tìm thương và dư :
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3;g(x)= 1+2x-4x
Tìm số dư trong phép chia f(x) : g(x)
f(x) = 3x3 + 4x2 - 2x +7
g(x) = x + 2
\(\text{ Theo bài ra ta có : }f_{\left(x\right)}=3x^3+2x^2-2x+7\\ g_{\left(x\right)}=x+2\)
Áp dụng định lý Bê-du, ta được:
\(f_{\left(-2\right)}=3\cdot\left(-2\right)^3+4\cdot\left(-2\right)^2-2\cdot\left(-2\right)+7\\ \\=-24+16+4+7\\ \\=3\)
\(\Rightarrow f_{\left(x\right)}:g_{\left(x\right)}\text{ }dư\text{ }3\)
Vậy số dư trong phép chia: \(f_{\left(x\right)}:g_{\left(x\right)}\) là \(3\)
Tìm số dư trong phép chia đa thứ f(x) cho đa thức g(x) trong các trường hợp sau
a) f(x) = x^21 + x^20 +x^19 + 101 ; g(x) = x+1
B)f(x) = 3^3 + 4^2 - 2x + 7 ; g(x) = x+2
C) f(x) = x^4 - 5x^3 + 2x - 10 ; g(x) = x-5
b: f(x)=3x^3+4x^2-2x+7
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^3+4x^2-2x+7}{x+2}\)
\(=\dfrac{3x^3+6x^2-2x^2-4x+2x+4+3}{x+2}\)
=3x^2-2x+2+3/x+2
Số dư là 3
c: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3\left(x-5\right)+2\left(x-5\right)}{x-5}=x^3+2\)
=>Số dư là 0
Cho đa thức: f(x)= x3-2x2+3x+a ; g(x)= x+1
a) Với a = 3, thực hiện phép chia f(x) : g(x)
b) Tìm a để phép chia f(x) : g(x) là phép chia hết
c) Tìm a để phép chia f(x) : g(x) có số dư là -5
d: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)
\(=x^2-3x+6+\dfrac{-1}{x+1}\)
Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)
Tìm số dư r và đa thức thương Q(x) khi thực hiện phép chia f(x)=5x^4–4x^3+2x^2+7x+8 cho g(x)=3x–1
Cho hai đa thức \(f\left(x\right)=x^4+3x^3+x^2-4x+7;g\left(x\right)=x^3+1\)Tìm x để dư của phép chia f(x) cho g(x)= 0
\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)
Để dư bằng 0 thì \(x^2-5x+4=0\)
\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Cho đa thức:
f(x)= x3-2x2+3x+a
g(x)= x+1
a) với a=3 thực hiện phép chia f(x) : g(x)
b) Tìm a để phép chia f(x) : g(x) là phép chia hết
c) Tìm a để phép chia f(x) : g(x) có số dư là -5
b: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)
\(=x^2-3x+6+\dfrac{a-6}{x+1}\)
Để f(x):g(x) là phép chia hết thì a-6=0
hay a=6