Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD= 15 cm, CD= 20 cm. Tính HB, HC
Cho tam giác ABC vuông ở A, Phân giác AD, đường cao AH. Biết BD = 15 cm, CD = 20 cm. Tính HB, HC.
Ta có: BC=BD+DC=15+20=35(cm)
+ AD là phân giác => DC/DB=AB/AC
=> AB/AC=20/15=4/3
=> AB=4AC/3
lại có AB^2+AC^2=BC^2
<=> 16AC^2/9+AC^2=BC^2
<=> 25AC^2/9=1225
<=> AC^2=441
có tam giác ABC vuông tại A, AH là đường cao
=> AC^2=CH.BC
=> CH=AC^2/BC=441/35=12.6(cm)
=> BH=35-12.6=22.4(cm)
Cho tam giác ABC vuông tại A , phân giác AD , đường cao AH . Biết BD = 15 cm , CD = 20 cm . Tính BH , HC
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)
tam giác ABC vuông tại A, đường cao AH, đường phân giác AD, biết AH= 24cm, HC-HB= 14 cm. tính BD,AD
có: HC . HB = AH2 = 576 trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)
mà HC - HB = 14 => HC = 14 + HB
thay vào (1): HC . HB = (14 + HB) . HB = HB2 + 14HB = 576
=> HB2 + 14HB - 576 = 0 => (HB - 18) (HB + 32) = 0 => HB = 18 cm
=> HC = 14 + 18 = 32 cm => BC = 18 + 32 = 50
=> AB2 = BH . BC = 18 . 50 = 900 => AB = 30 cm
=> AC2 = CH . BC = 32 . 50 = 1600 => AC = 40 cm
Có: BD/DC = AB/AC => BD/AB = DC/AC và BD + DC = 50
áp dụng tính chất dãy tỉ số bằng nhau đc:
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+CD}{AB+AC}=\frac{50}{70}=\frac{5}{7}\)
=> BD = 5 . AB = 5 . 30 : 7 = 150/7 cm=> CD = 50 - 150/7 = 200/7 cm
=> HD = 50 - CD - BH = 50 - 200/7 - 18 = 24/7 cm
xét tam giác vuông ADH:
AD2 = AH2 + DH2 = 242 + (24/7)2
=> AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2}\approx24,244\)cmTa có: HB.HC=AH^2=24^2=576.
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC)
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu)
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC:
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7
=>HD=BD-HB=150/7-18=24/7.
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có:
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49
=>AD=căn(28800/49) sấp sỉ 24,244.
Mình không vẽ hình ra, bạn tự nhìn hình của bạn nhé.
Trong sgk lớp 9, tập một, phần hình học ở bài 1 có mấy cái định lý, bạn chú ý vào định lý 2: Trong một tam giác vuông, bình phương của đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Trong bài này, đường cao là AH, hình chiếu của hai cạnh góc vuông trên cạnh huyền là HB và HC nên ta có: HB.HC=AH^2=24^2=576.
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC)
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu)
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC:
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7
=>HD=BD-HB=150/7-18=24/7.
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có:
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49
=>AD=căn(28800/49) sấp sỉ 24,244.
Đáp số: AD sấp sỉ 24,244
BD=150/7
Cho tam giác ABC vuông tại A đường cao AH phân giác AD biết BC = 5 cm DC = 20 cm Tính độ dài AB AC HB HC và diện tích tam giác AHD
DB/DC=AB/DC
DB+DC=BC
=>DB=5-20=-15 là sai đề rồi bạn
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho tam giác ABC vuông tại A, phân giác AD và đường cao AH, biết CD = 68 cm, BD = 51 cm. Tính HB, HC.
Theo tính chất của tia phân giác ta có
\(\frac{AC}{AB}=\frac{DC}{DB}=\frac{68}{51}=\frac{4}{3}\Rightarrow AC=\frac{4}{3}AB\)
Lại có \(AB^2+AC^2=BC^2=\left(68+51\right)^2=119^2=14161\)
\(\Rightarrow\left(\frac{4}{3}AB\right)^2+AB^2=14161\Rightarrow\frac{25}{9}AB^2=14161\Rightarrow AB=71,4\left(cm\right)\)
\(\Rightarrow AC=\frac{4}{3}.71,4=95,2\left(cm\right)\)
Ta có \(AB.AC=BC.AH\Rightarrow AH=\frac{AB.AC}{CB}=57,12\left(cm\right)\)
Xét \(\Delta AHC\)có \(HC=\sqrt{AC^2-AH^2}=\sqrt{5800}=76,16\left(cm\right)\)
\(\Rightarrow HB=BC-HC=119-76,16=42,84\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH, đường phân giác AD, cho biết HB= 112 cm, HC= 63 cm
a, Tính AH
b,Tính AD
10c - 11b / 9 =11a-9c/10=9b-10a/11 .chứng minh a/9=b/10=c/11
cho tam giác vuông ABC ( góc A = 90 độ ), đường cao AH , đường phân giác AD. biết AH=24 cm , HC-HB=14cm. tính BD và DA
bạn bấm vào chữ'' đúng 0'' sẽ hiện ra đáp án
Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath