So sánh 75/100 và 4/5
so sánh
a) 2^135 và 3^90
b) 4^75 và 3^100
c)4^100 và 9^75
a) \(2^{135}=2^{3.45}=\left(2^3\right)^{45}=8^{45}\)
\(3^{90}=3^{2.45}=\left(3^2\right)^{45}=9^{45}\)
Vì \(8^{45}< 9^{45}\)nên \(2^{135}< 3^{90}\)
b) \(4^{75}=4^{3.25}=\left(4^3\right)^{25}=64^{25}\)
\(3^{100}=3^{4.25}=\left(3^4\right)^{25}=81^{25}\)
Vì \(64^{25}< 81^{25}\)nên \(4^{75}< 3^{100}\)
c) \(4^{100}=4^{4.25}=\left(4^4\right)^{25}=256^{25}\)
\(9^{75}=9^{3.25}=\left(9^3\right)^{25}=729^{25}\)
Vì \(256^{25}< 729^{25}\)nên \(^{4^{100}< 9^{75}}\)
So sánh :
a, 24^10 và 3^30 + 4^30 + 5^30
b, 2^100 ; 3^75 ; 5^50
a, 24^10 < 3^30 + 4^30 + 5^30
b, 2^100 < 5^50 < 3^75.
so sánh a=2^100,b=3^75,c=5^50
\(a=2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(b=3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(c=5^{50}=\left(5^2\right)^{25}=25^{25}\)
Vì \(16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow a< c< b\)
\(a=2^{100},b=3^{75},c=5^{50}\\ \Rightarrow a=30^{85},b=30^{65},c=30^{44}\\ \Rightarrow a>b>c\)
Ta có:
\(a=2^{100}=2^{4\cdot25}=\left(2^4\right)^{25}=16^{25}\)
\(b=3^{75}=3^{3\cdot25}=\left(3^3\right)^{25}=27^{25}\)
\(c=5^{50}=5^{2\cdot25}=\left(5^2\right)^{25}=25^{50}\)
Ta thấy:
\(16< 25< 27\)
\(\Rightarrow16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)
\(\Rightarrow a< c< b\)
a) 1/3 + 1/2 : x = -4
b) 2. ( x - 2)^2= 49/8
bài 2:
So sánh 3^100 và 5^200
Bài 3:
chứng tỏ rằng: 75^20 = 42^10 . 25^11
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r
so sánh phân số sau:
6/8...5/7
9/15...3/5
24/36...75/100
\(\dfrac{6}{8}\) ....\(\dfrac{5}{7}\)
\(\dfrac{6}{8}=\dfrac{30}{40}\); \(\dfrac{5}{7}\) = \(\dfrac{30}{42}\)
Vì \(\dfrac{30}{40}\) > \(\dfrac{30}{42}\) nên \(\dfrac{6}{8}\) > \(\dfrac{5}{7}\)
\(\dfrac{9}{15}\) ....\(\dfrac{3}{5}\)
\(\dfrac{9}{15}\) = \(\dfrac{9:3}{15:3}\) = \(\dfrac{3}{5}\)
Vậy \(\dfrac{9}{15}\) = \(\dfrac{3}{5}\)
\(\dfrac{24}{36}\) ....\(\dfrac{75}{100}\)
\(\dfrac{24}{36}\) = \(\dfrac{24:12}{36:12}\) = \(\dfrac{2}{3}\) = 1 - \(\dfrac{1}{3}\); \(\dfrac{75}{100}\) = \(\dfrac{75:25}{100:25}\) = \(\dfrac{3}{4}\) = 1 - \(\dfrac{1}{4}\)
vì \(\dfrac{1}{3}\) > \(\dfrac{1}{4}\) nên 1 - \(\dfrac{1}{3}\) < 1 - \(\dfrac{1}{4}\)
Vậy \(\dfrac{24}{36}\) < \(\dfrac{75}{100}\)
6/8>5/7
9/15=3/5
24/36<75/100
❤❤❤
So sánh 475 và 560
So sánh : 2100 và 375
\(2^{100}=\left(2^4\right)^{25}=16^{25};3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(\Leftrightarrow2^{100}
So sánh: 2100 375 550
Ta có :
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(5^{50}=\left(5^2\right)^{25}=25^{25}\)
Do \(16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)
So sánh: 5^100+6/5^100+4 và 5^100+7/5^100+5
Áp dụng a/b > 1 => a/b > a+m/b+m (a,b,m thuộc N*)
=> \(\frac{5^{100}+6}{5^{100}+4}>\frac{5^{100}+6+1}{5^{100}+4+1}\)
\(>\frac{5^{100}+7}{5^{100}+5}\)