Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Elly Nguyễn
Xem chi tiết
Tran Thi Xuan
Xem chi tiết
Tran Thi Xuan
Xem chi tiết
Nguyễn Hoàng Phúc
Xem chi tiết
Nguyễn Hữu Trường Hải
13 tháng 5 2020 lúc 19:22

123456

Khách vãng lai đã xóa
Nguyễn Thảo Nguyên
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 7 2023 lúc 21:56

\(a,=\left(5x^3+10x\right)+\left(x^4-4\right)\\ =5x\left(x^2+2\right)+\left(x^2+2\right)\left(x^2-2\right)\\ =\left(x^2+2\right)\left(x^2+5x-2\right)\\ b,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(c,=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\\ d,=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\\ e,=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^{10}-x^7+x^5-x^4+x^3-x+1\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 21:54

a: =x^4+2x^2+5x^3+10x-2x^2-4

=(x^2+2)(x^2+5x-2)

b; =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)*(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

c: =x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1

=(x^2+x+1)(x^6-x^5+x^3-x^2+1)

Đức Lộc
Xem chi tiết
Pham Van Hung
15 tháng 11 2018 lúc 20:15

\(x^4-8x+63=\left(x^2\right)^2+2.x^2.8+8^2-16x^2-8x-1\)

\(=\left(x^2+8\right)^2-\left(4x+1\right)^2\)

\(=\left(x^2+8-4x-1\right)\left(x^2+8+4x+1\right)=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)

tth_new
13 tháng 3 2019 lúc 8:09

Cách hệ số bất định đây nhé:

Giả sử: \(x^4-8x+63=\left(x^2+ax+7\right)\left(x^2+cx+9\right)\)

\(=x^4+cx^3+9x^2+ax^3+acx^2+9ax+7x^2+7cx+63\)

\(=x^4+\left(c+a\right)x^3+\left(9+ac+7\right)x^2+\left(9a+7c\right)+63\)

Đồng nhất hệ số,ta được: 

c + a = 0 (1)

ac  = - 16  (2)

9a + 7c = -8  (3)

Giải (1) được c=-a.Thay vào (2) được: \(ac=-a^2=c^2=16\)

Suy ra \(c=4\Rightarrow a=-4\) (ta thay vào (3) để loại c = -4 nên ở đây mình làm tắt)

Vậy: \(x^4-8x+63=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)

P/s: Ở đây là gặp may mắn vì đã chọn được 63 = 7 . 9 là đúng=) Còn chọn 63 = 1. 63 thì khó làm đấy=)

 ๛๖ۣۜMĭη²ƙ⁸࿐
Xem chi tiết
Kudo Shinichi
24 tháng 9 2019 lúc 20:50

Đặt H \(=x^4-5x^3+7x^2-6\)

Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

                   \(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)

                      \(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)

       \(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)

                 \(\left\{bd=6\right\}\)

           \(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)

                   \(\left\{d=-2\right\}\)

\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)

Chúc bạn học tốt !!!

thy nguyen
Xem chi tiết
Minh Triều
11 tháng 7 2015 lúc 12:35

phương pháp hệ số bất định rắc rôi chết

trần manh kiên
Xem chi tiết
Cô Hoàng Huyền
28 tháng 12 2017 lúc 14:31

Giả sử phương trình f(x) = 0 có nghiệm nguyên x = a. Khi đó f(x) = (x - a).g(x)

Vậy thì f(0) = -a.g(x)   ; f(1) = (1 - a).g(x) ; f(2) = (2 - a).g(x);    f(3) = (3 - a).g(x) ; f(4) = (4 - a).g(x) ; 

Suy ra f(0).f(1).f(2).f(3).f(4) = -a.(1-a)(2-a)(3-a)(4-a).g5(x)

VT không chia hết cho 5 nhưng VP lại chia hết cho 5 (Vì -a.(1-a)(2-a)(3-a)(4-a) là tích 5 số nguyên liên tiếp nên chia hết cho 5)

Vậy giả sử vô lý hay phương trình f(x) = 0 không có nghiệm nguyên.