Tìm tất cả các số nguyên dương n sao cho n!+5 là lũy thừa bậc 3 của 1 số tự nhiên
Tìm tất cả các số tự nhiên n sao cho \(n^3+3n^2+n+3\) là lũy thừa của một số nguyên tố
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên n sao cho: n^2+3n+1 là 1 lũy thừa của 3
Gọi n!+5=x3 (n,x thuộc N)
Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.
Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.
Vậy n=5.
Tìm số nguyên dương nhỏ nhất thỏa mãn các mãn các điều kiện sau: 1/2 số đó là 1 số chính phương, 1/3 số đó là lũy thừa bậc 3 của 1 số nguyên, 1/5 số đó là lũy thừa bậc 5 của 1 số nguyên
Cho dãy số : n, n + 1, n + 2, ... , 2n với n là số nguyên dương. Chứng minh trong dãy có ít nhất một lũy thừa bậc 2 của một số tự nhiên.
Tìm sốn nguyên dương nhỏ nhất thỏa mãn các điều kiện sau: 1/2 số đó là số chính phương; 1/3 số đó là lũy thừa bậc ba của một số nguyên; 1/5 số đó là lũy thừa bậc năm của một số nguyên
Ai nhanh mk tick cho
Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2
Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c
Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3
Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6
Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10
c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15
Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.
Vậy là kết quả ra bn. Mik vẫn chưa hiểu
Tìm tất cả các số có 10 chữ số có chữ số tận cùng là 4 và là lũy thừa bậc năm của 1 số tự nhiên
Sử dụng đồng dư:
Trước hết ta thấy dó n5 và n có chung chữ số tận cùng nên \(n^5\equiv n\left(mod10\right)\forall n.\)
Gọi x là số cần tìm, a là số tự nhiên thỏa mãn: \(x=a^5.\) Theo lập luận bên trên, do x có tận cùng là 4 nên a cũng có tận cùng là 4.
Vậy thì \(1000000004\le a^5\le9999999994\Rightarrow63< a< 100\)
Do a có tận cùng là 4 nên a = 64, 74 , 84, 94. Vậy x = 1073741824; 2219006624; 4182119424; 7339040224.
Bài 2:Viết chương trình cho phép nhập số nguyên dương N rồi thực hiện
a. cho biết N có phải là lũy thừa ba của một số hay không
b. Viết N dưới dạng một lũy thừa với số mũ là số tự nhiên của 5, viết không nếu N không phải là lũy thừa của 5
c. Tìm số dư khi N mũ n chia cho 7
Mik cần gấp ạ, giúp mik với và bằng Pascal nhé!!!!
Làm bằng pascal thì những bài như thế này thì test lớn chạy không nổi đâu bạn
#include <bits/stdc++.h>
using namespace std;
long long n,a,b;
int main()
{
cin>>n;
a=1;
while (pow(a,3)<=n)
{
a++;
}
if (pow(a,3)==n) cout<<"YES";
else cout<<"NO";
cout<<endl;
b=1;
while (pow(5,b)<=n) do b++;
if (pow(5,b)==n) cout<<"YES";
else cout<<"NO";
cout<<endl<<pow(n,n)%7;
return 0;
}
tìm tất cả số nguyên n sao cho n^2 + 3n + 1 là một lũy thừa của 3