Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Công Phước
Xem chi tiết
Đặng Tấn Phát
28 tháng 10 2023 lúc 19:14

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Chi Nguyễn
Xem chi tiết
Chi Nguyễn
23 tháng 4 2018 lúc 20:18

Giúp với

Cô nàng Thiên Bình
23 tháng 4 2018 lúc 20:29

hình bn tự vẽ nha

a)Xét    Tam giác ABE và  tam giác HBEcó

góc BAE= góc BHE(= 90 độ)

cạnh BE chung

góc ABE=góc HBE(giả thiết)

=>   Tam giác ABE = tam giác HBE(c/h-g/n)

b)  VÌ  Tam giác ABE = tam giác HBE(cmt)

=>BA=BH(2 cạnh tương ứng)

=>B thuộc đường trung trực của AH

=>BE là đường trung trực của đoạn thẳng AH

c) VÌ  Tam giác ABE = tam giác HBE(cmt)

=>AE=HE(2 cạnh tương ứng)

Xét tam giác AEK và tam giác HEC có

góc KAE=CHE(= 90 độ)

AE=HE

góc AEK=góc HEC(= 90 độ)

=>tam giác AEK = tam giác HEC(g.c.g)

=>Ek=EC(2 cạnh tương ứng)

phạm văn tuấn
1 tháng 5 2018 lúc 15:50

a)Xét \(\Delta\) ABE và  \(\Delta\)HBE có:

góc BAE= góc BHE(= 90 độ)

cạnh BE chung

góc ABE=góc HBE(giả thiết)

=>   \(\Delta\)ABE = \(\Delta\)HBE(c/h-g/n)

b)  VÌ  \(\Delta\)ABE = \(\Delta\)HBE(cmt)

=>BA=BH(2 cạnh tương ứng)

=>B thuộc đường trung trực của AH

=>BE là đường trung trực của đoạn thẳng AH

c) VÌ  \(\Delta\)ABE = \(\Delta\)HBE(cmt)

=>AE=HE(2 cạnh tương ứng)

Xét \(\Delta\)AEK và \(\Delta\)HEC có

góc KAE=CHE(= 90 độ)

AE=HE

góc AEK=góc HEC(= 90 độ)

=>\(\Delta\)AEK =\(\Delta\)HEC(g.c.g)

=>Ek=EC(2 cạnh tương ứng)

Quốc Hưng
Xem chi tiết
Nhók Bướq Bỉnh
29 tháng 7 2016 lúc 20:54

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

phát
3 tháng 8 2022 lúc 12:41

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Mây Phiêu Du
Xem chi tiết
Thao Nhi
20 tháng 8 2015 lúc 11:54

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

Đỗ_Công_Quân1
3 tháng 5 2017 lúc 12:35

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC

Hoàng Như Quỳnh
8 tháng 5 2017 lúc 20:17

Đề mình hơi khác các bạn giả hộ mình vs

phần C của mình là so sánh BC vs MH cơ

Khúc Tiểu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 13:03

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: ta có: ΔABE=ΔHBE

nên AE=HE; BA=BH

Suy ra: BE là đường trung trực của AH

nguyễn thị thu hoài
Xem chi tiết
Trương Việt Khôi
12 tháng 4 2018 lúc 20:11

Xét tam giác ABE và tam giác HBE có:

BAE=BHE=900

BE là cạnh chung 

góc ABE=gócHBE

=>tam giác ABE=tam giác HBE(cạnh huyền góc nhọn)

b)Ta có :BA=BH(Vi tam giác ABE=tam giác HBE)

              EA=EH(Vi tam giác ABE=tam giác HBE)

=>BE là đường trung trực của AH 

c)Xét tam giác EKA va tam giác ECH,có

AE=EH(Vi tam giác ABE=tam giác HBE)

góc EAK=góc EHC=900 

góc AEK=góc HEC(2 góc đối đỉnh)

=>tam EAK=tam giác HEC(g.c.g)

=>EK=EC(2 cạnh tương ứng)

Phạm Khánh Huyền
Xem chi tiết
Trần Duy Lộc
Xem chi tiết
Trần Việt Linh
14 tháng 8 2016 lúc 9:14

Xét ΔABE và ΔHBE có:

   \(\widehat{BAE}=\widehat{BHE}=90\) (gt)

   BE:cạnh chung

   \(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)

b) Vì ΔABE=ΔHBE(cmt)

=> AB=BH ; AE=EH

=> B,E \(\in\) đường trung trực của đoạn thẳng AH

=>BE là đường trung trực của đoạn thẳng AH

c) Xét ΔAEK và ΔHEC có:

      \(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)

     AE=EH(cmt)

      \(\widehat{AEK}=\widehat{HEC}\)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d) Xét ΔEHC vuông tại H(gt)

=> HE<EC

Mà: HE=AE(cmt)

=>AE<EC

d) Xét ΔHKC có:

KH,CA là hai đường cao

=> E là trực tâm của ΔBKC

=>BE là đường cao

=> AE vuông góc KC

nhoc quay pha
15 tháng 8 2016 lúc 17:17

a)

xét 2 tam giác vuông ABE và HBE có:

BE(chung)

góc ABE= góc CBE(gt)

=> ΔABE=ΔHBE(CH-GN)

b)

gọi giao của BE và AH là F 

xét ΔABF và ΔHBF có:

AB=HB(theo câu a, ΔABE=ΔHBE)

BF(chung)

góc ABE=góc HBE(gt)

=> ΔABF=ΔHBF(c.g.c)

=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)

=> BE là đường trung trực của AH

c)

xét ΔAEK và ΔHEC có:

EA=EH(theo câu a, ΔABE=ΔHBE)

góc KAE=góc EHC=90º(gt)

góc AEK=góc CEH(2 góc đối đỉnh)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d)

ta có ΔAEK vuông tại A

=> EK>AE

mà EK=EC(theo câu c)

=> AE<EC

e)

theo câu a, ta có: ΔABE=ΔHBE(CH-GN)

=>AB=HB

theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)

=> AK=HC

ta có: KB=KA+AB

CB=CH+HB

=>KB=CB

=>ΔKBC cân tại B 

ta có:ΔKCB cân tại B có BE là đường phân giác

=>BE đồng thời là đường cao của ΔKBC

=>BE_|_KC 

f)

áp dụng định lí py-ta-go ta có;

\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)

\(AC=\sqrt{16}=4\left(cm\right)\)

theo câu e; ta có ΔKBC cân tại B

=> BC=BK=5cm

AK=BC-AB=5cm-3cm=2cm

áp dụng định lí py-ta-go ta có:

\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)

\(KC=\sqrt{20}\left(cm\right)\)

Ngọc Teddy
26 tháng 8 2016 lúc 16:08

cho hinh ve tinh tong o1 o2 o3 haha

Lộc Trần Duy
Xem chi tiết
fan FA
14 tháng 8 2016 lúc 9:40

a) Tam giác ABE và tam giác HBE có góc A = góc H = 90độ, góc ABE = góc HBE, cạnh huyền BE chung nên hai tam giác đó bằng nhau. 
b) từ hai tam giác trên bằng nhau suy ra BA = BH, EA = EH suy ra B và E cùng thuộc đường trung trực của AH suy ra BE là đường trung trực của AH. 
c) c/m hai tam giác vuông AKE và HCE bằng nhau theo trường hợp góc cạnh góc. suy ra EK = EC. 
d) tam giác AKE vuông tại A nên AE<EK mà EK = EC nên AE < EC.

Bùi Tiến Mạnh
14 tháng 8 2016 lúc 14:13

Bài này cực dễ luôn

Lộc Trần Duy
14 tháng 8 2016 lúc 20:24

Thanks bạn!