Cho A=(2n+1)+(2m+2015)
Cho tổng A rằng: A chia hết cho 2
chứng minh rằng nếu a và b là các số tự nhiên thỏa mãn 5a+3b và 13a+8b cũng chia hết cho 2015 thì a chia hết cho 2015 và b cũng chia hết chia hết cho 2015
2)tìm số tự nhiên n để
(15-2n) chia hết cho (n+1) với n nhỏ hơn hoặc bằng 7
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
1.Tìm x,y để :
a)x378y chia hết cho 8 và 9
b)3x23y chia hết cho 5 và 11
c)3x4y5 chia hết cho 9 và x-y=2
2.Cho n€N, chứng minh rằng
a) (n+2016)*(n+2019) chia hết cho 2
b) (n+2015)*(n+2016)*(n+2017) chia hết cho 3
c) n*(n+1)*(2n+1) chia hết cho 3
3.Chứng minh rằng:
-Tổng 5 số tự nhiên liên tiếp chia hết cho 5
-Tổng 6 số tự nhiên liên tiếp không chia hết cho 6
4.Tìm số tự nhiên lớn nhất có 3 chữ số chia 4 và chia 25 dư 8
5.Tìm a biết:
a)32a1 chia hết cho 7
b) 1a25 chia hết cho 13
c)a38 chia hết cho 6
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
xim lỗi ở chỗ ta xét điều kiện thì bạn thay chỗ 5-(x+3)>11 thì bạn sửa dấu > thành < nhé !!!!
làm tiếp ý b bạn nhé
thử TH2 với y=5 tương tự vậy thì mình sẽ ra kết quả là 37235
Cho biểu thức A=(2015^2016 - 1).(2015^2016 +1 )
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
Bài 1
a) Viết tổng sau thành 1 tích
3^4+3^5+3^6+3^7
b)Chứng minh rằng
a)A=1+3+3^2+......3^99 chia hết cho 40
Bài 2 Chứng minh rằng
a) A=5+5^2+5^3+.....+5^2004 cha hết cho 6 ,31,156
b)B=165+2^15 chia hết cho 33
Bài 3 Cho M = 1+2+2^2+....+2^200
a)Viết M+1 dưới dạng lũy thừa
b)N=3+3^2+.....+3^2015
Chứng minh rằng 2N+3 là 1 lũy thừa
Bài 1
a) 34 + 35 + 36 + 37 = 34(1 + 3 + 32 + 33)\
b) a)A = 1 + 3 + 32 +......399 =(1 + 3 + 32 + 33 ) + ...+(396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33 ) + .. +396(1 + 3 + 32 + 33 )
= 40 + ... + 396 . 40
= 40 (1 + 3 +...+ 396) chia hết cho 40
Bài 2
a)
+)A chia hết cho 6
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^{2002}.30\)
\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6
+)A chia hết cho 31
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)
\(A=155+5^3.155+...+5^{2001}.155\)
\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31
+) A chia hết cho 156
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)
\(A=780+5^4.780+...+5^{2000}.780\)
\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156
b)B=165+2^15 chia hết cho 33
ta có 165 chia hết cho 33
mà 215 ko chia hết cho 33
vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.
chứng tỏ A= 1+\(3^1\)+\(3^2\)+....+\(3^{99}\)là B(4) và là B (40).