CHo x, y tm \(2x^2+3y^2=4\)
x+2y\(\le \sqrt{\frac{22}{3} } \)
Cho x,y thuộc R, \(2x^2+3y^2=4\)
Cmr:\(x+2y\le\sqrt{\frac{22}{3}}\)
\(x+2y=\sqrt{\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+\frac{2}{\sqrt{3}}.\sqrt{3}y\right)^2}\le\sqrt{\left(\frac{1}{2}+\frac{4}{3}\right)\left(2x^2+3y^2\right)}=\sqrt{\frac{22}{3}}\)
cho x,y>0 thỏa mãn \(2x^2+3y^2=4\)
Cmr: \(x+2y\le\sqrt{\frac{22}{3}}\)
Áp dụng BĐT Bunhicopxki:
\(\left(\sqrt{\frac{1}{2}}^2+\sqrt{\frac{4}{3}}^2\right)\left(\left(\sqrt{2}x\right)^2+\left(\sqrt{3}y\right)^2\right)\ge\left(x+2y\right)^2\)
\(\Leftrightarrow\frac{11}{6}\left(2x^2+3y^2\right)\ge\left(x+2y\right)^2\)
\(\Leftrightarrow\frac{44}{6}=\frac{22}{3}\ge\left(x+2y\right)^2\)(1)
Do x, y > 0 nên x + 2y > 0 do đó từ (1) suy ra \(x+2y\le\sqrt{\frac{22}{3}}\)(đpcm)
Cho x,y khác 0.
CMR : \(\frac{2x^2+3y^2}{2x^3+3y^3}+\frac{3x^2+2y^2}{3x^3+2y^3}\le\frac{4}{x+y}\)
Đề kì vậy bạn. Sao vế trái không có \(y\) vậy?
cho x, y, z là các số nguyên dương tm \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\). Cmr: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Liên tục áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) và ta có:
\(\frac{1}{3x+3y+2x}=\frac{1}{2\left(x+y\right)+\left(x+y+2z\right)}\le\frac{1}{4}\left(\frac{1}{2\left(x+y\right)}+\frac{1}{\left(x+z\right)+\left(y+z\right)}\right)\le\frac{1}{8\left(x+y\right)}+\frac{1}{16}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
Chứng minh tương tự tạ có:
\(\frac{1}{3x+2y+3z}\le\frac{1}{8\left(z+x\right)}+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)
\(\frac{1}{2x+3y+3z}\le\frac{1}{8\left(y+z\right)}+\frac{1}{16}\left(\frac{1}{z+x}+\frac{1}{x+y}\right)\)
Suy ra \(VT\le\frac{1}{8}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)+\frac{1}{8}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{4}\)
Giải hệ phương trình: \(\begin{cases}y^3-3y^2-6x+2=\frac{\sqrt{y^3+6x+10}-\sqrt{2y^3-3y^2}}{x^2+2x+2016}\\\sqrt{2x^2-xy+x}=3y-2x-3\end{cases}\)
\(\hept{\begin{cases}2x^3-y^2+\sqrt[3]{2x^3-3y+1}-\sqrt[3]{y^2+1}=3y\\x^5+x^3y^2+2y^4-yx^4-x^2y^3-y^5-2013\left(x+y\right)=0\end{cases}}\)
Rút gọn:
\(\frac{x+y}{y}\sqrt{\frac{x^3y^2+2x^2y^3+xy^4}{x^2+2xy+y^2}}\)
Cho x,y tm x,y\(\in R\) và \(0\le x,y \le\frac{1}{2}\)
CMR:\(\frac{\sqrt{x}}{1+y}+ \frac{\sqrt{y}}{1+x}\le\frac{2\sqrt{2}}{3}\)
\(\left\{{}\begin{matrix}\sqrt{3y+1}+\sqrt{5x+4}=3xy-y+3\\\sqrt{2x^{^2}+2y^{^2}}+\sqrt{\frac{4}{3}\left(x^{^2}+y^{^2}+xy\right)}=2\left(x+y\right)\end{matrix}\right.\)
Với $x+y \geqslant 0$, ta có:
$2x^2+2y^2 \geqslant (x+y)^2 \Rightarrow \sqrt{2x^2+2y^2} \geqslant x+y$
\(x^2+xy+y^2=(x+y)^2-xy \geqslant (x+y)^2-\dfrac{(x+y)^2}{4} \Rightarrow \sqrt {\dfrac{{4\left( {{x^2} + xy + {y^2}} \right)}}{3}} \ge x + y\)
$\sqrt{2x^2+2y^2}+\sqrt {\dfrac{{4\left( {{x^2} + xy + {y^2}} \right)}}{3}} \geqslant 2(x+y) \Rightarrow PT(2) \Leftrightarrow x = y$
Vậy hệ phương trình có 2 nghiệm $(x;y)$ là $(0;0); (1;1)$