Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGO BAO CHAU
Xem chi tiết
Ngọc Mạc
Xem chi tiết
Nguyễn Huệ Lam
27 tháng 6 2017 lúc 17:11

Ta có:

\(g\left(x\right)=x^2+8x+12=\left(x+2\right)\left(x+6\right)\)

Vì g(x) là đa thức bậc 2 nên đa thức dư khi chia f(x) cho g(x) là đa thức bậc nhất.

Đặt đa thức dư khi chia f(x) cho g(x) là h(x)= ax+b.

Ta có

\(h\left(-2\right)=f\left(-2\right)\)

\(\Leftrightarrow-2a+b=1987\)(1)

\(h\left(-6\right)=f\left(-6\right)\)

\(\Leftrightarrow-6a+b=1987\)(2)

Từ (!)(2) suy ra:

\(-2a+b=-6a+b=1987\)

\(\Leftrightarrow-2a=-6a\Leftrightarrow a=0\Rightarrow b=1987\)

Vậy số dư khi chia fx ccho gx là 1987

Trịnh Ánh My
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
meme
23 tháng 8 2023 lúc 20:04

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 8:06

\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:31

b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)

Minh Nguyệt
Xem chi tiết
Kim Lữ Nguyễn
Xem chi tiết
tran thi minh que
Xem chi tiết
Đoàn Đức Hà
28 tháng 1 2022 lúc 8:40

\(q\left(x\right)=x^2+8x+12=0\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}\)

\(f\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(f\left(x\right)=q\left(x\right)p\left(x\right)+ax+b\)

suy ra 

\(\hept{\begin{cases}f\left(-2\right)=-2a+b\\f\left(-6\right)=-6a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}-2a+b=-6\\-6a+b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-6\end{cases}}\)

Vậy số dư cần tìm là \(-6\).

Khách vãng lai đã xóa