Tìm x,y \(\in\) Z biết \(2x^2+3y^2=77\)
tìm x,y\(\in Z\)tm 2x2+3y2=77
tìm x,y thuộc Z:2x^2+3y^2=77
Bn vào theo link này : https://olm.vn/hoi-dap/detail/79417822508.html
Ta có:
Mặt khác: Vì lẻ nên lẻ suy ra $y$ lẻ
Do đó
Thay vào pt ban đầu ta thấy thỏa mãn
Vậy
Tìm \(x;y\in Z\) thỏa mãn : \(2x^2+3y^2=77\)
\(2x^2+3y^2=77\)
\(\Rightarrow3y^2=77-2x^2\le77\)
\(\Rightarrow3y^2\le77\)
Mặt khác: \(3y^2\ge0\) nên \(0\le3y^2\le77\)
Kết hợp với \(3y^2\in Z\) và \(3y^2⋮3\)
\(\Rightarrow3y^2\in\left\{0;3;6;9;12;15;18;21;24;27;30;33;36;39;42;45;48;51;54;57;60;63;66;69;72;75\right\}\)
\(\Rightarrow y^2\in\left\{0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25\right\}\)
Vì \(y\in Z\) nên ta chọn: \(y^2\in\left\{0;4;9;16;15\right\}\)
Với \(y^2=0\Leftrightarrow3y^2=0\Leftrightarrow2x^2=77\)(loại)
Với \(y^2=4\Leftrightarrow3y^2=12\Leftrightarrow2x^2=65\)(loại)
Với \(y^2=9\Leftrightarrow3y^2=27\Leftrightarrow2x^2=50\Leftrightarrow x^2=25\Leftrightarrow x=\pm5\)
Với \(y^2=16\Leftrightarrow3y^2=48\Leftrightarrow2y^2=29\)(loại)
Với \(y^2=25\Leftrightarrow3y^2=75\Leftrightarrow2x^2=2\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(5;3\right);\left(5;-3\right);\left(-5;3\right);\left(-5;-3\right);\left(1;5\right);\left(-1;-5\right);\left(1;-5\right);\left(-1;5\right)\)
Tìm x;y biết:2x2 +3y2=77; x,y là số nguyên
1) x/2=y/3=z/5 và x+2y-3z=77
2) 2x=3y=5z và x-y+z=-33
1. Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)=> \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{77}{-7}=-11\)
=> \(\hept{\begin{cases}\frac{x}{2}=-11\\\frac{y}{3}=-11\\\frac{z}{5}=-11\end{cases}}\)=> \(\hept{\begin{cases}x=-22\\y=-33\\z=-55\end{cases}}\)
2. Ta có : \(2x=3y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{11}{30}}=-90\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=-90\\\frac{y}{\frac{1}{3}}=-90\\\frac{z}{\frac{1}{5}}=-90\end{cases}}\)=> \(\hept{\begin{cases}x=-45\\y=-30\\z=-18\end{cases}}\)
Tìm x, y , z biết :
1) x-1 / 2 = y-2 / 3 = z-3 / 4 và x - 2y + 3z = 14
2) 2x = 3y = 10z - 2x - 3y và x - y + z = -15
3) 2x = 3y = 10z - 2x và x - y + z = -33
tim x,y € z
xy-x+2y=3
2x^2+3y^2=77
a, tìm x biết 3x - [2x + 1] = 2
b, tìm x, y, z biết: 3( x - 1) = 2( y - 2), 4( y - 2) = 3( z - 3) và 2x + 3y - z = 50
1) Tìm x,y,z biết
x/3=y/4=z/5 và 2x2+2y2 -3z2=-100
2) Giá trị của y, biết :
2/3x=1/2y=2/z và 3x+2y+z=1
3) Tìm x, y, z, biết
2x=y, 3y=2x và 4x-3y+2z=36
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20