\(Cho x,y,z>2 và \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR
\((x-2)(y-2)(z-2)\le1\)
Cho x,y,z>0; x+y+z=zy+yz+xz
CMR:\(\frac{1}{x^2+y+1}+\frac{1}{y^2+z+1}+\frac{1}{z^2+x+1}\le1\)
x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.
A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)
Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3
dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3
suy ra A<1/3.3=1(đpcm)
Cho x, y, z > 0 thỏa mãn x + y +z = xy + yz + zx
CMR \(\frac{1}{x^2+y+1}+\frac{1}{y^2+z+1}+\frac{1}{z^2+x+1}\le1\)
Cho 3 số thực dươi x,y,z biết xyz=1
Cmr \(\frac{1}{x^2+y^2+1}+\frac{1}{x^2+z^2+1}+\frac{1}{y^2+z^2+1}\le1\)
Đặt \(\left(x^2;y^2;z^2\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
Đặt vế trái là P \(\Rightarrow P=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow P\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(P\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)
\(P\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)
Cho x,y,z>0 ; x+y+z\(\le1\)
CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
mk hơi vội nên sai 1 số lỗi nhỏ bn tự sửa nhé
\(A=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
Áp dụng Bđt MIncopxki ta có:
\(A\ge\sqrt{\left(x+y+\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2+80}=\sqrt{82}\)
Dấu = khi \(x=y=z=\frac{1}{3}\)
vì sao từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) mà ra được \(\frac{81}{\left(x+y+z\right)^2}\)
Cho x,y,z>2 tm: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). CMR: \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Đặt \(\hept{\begin{cases}a=x-2\\b=y-2\\c=z-2\end{cases}}\left(a,b,c>0\right)\)
Lúc đó giả thiết được viết lại thành \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)và ta cần chứng minh \(abc\le1\)
Ta có: \(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)
\(=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}\)(Theo bất đẳng thức Cauchy cho 2 số dương) (1)
Hoàn toàn tương tự: \(\frac{1}{b+2}\ge2\sqrt{\frac{ca}{4\left(c+2\right)\left(a+2\right)}}\)(2) ; \(\frac{1}{c+2}\ge2\sqrt{\frac{ab}{4\left(a+2\right)\left(b+2\right)}}\)(3)
Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\sqrt{\left(a+2\right)^2\left(b+2\right)^2\left(c+2\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\Leftrightarrow abc\le1\)(đpcm)
Đẳng thức xảy ra khi \(x=y=z=3\)
Cho x,y,z > 2 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). CMR: \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Đặt \(\left(x-2,y-2.z-2\right)=\left(a,b,c\right)\) (a, b, c > 0).
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
\(\Leftrightarrow\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}=1\)
\(\Leftrightarrow abc+ab+bc+ca=4\).
Nếu \(abc>1\Rightarrow ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}>3\Rightarrow abc+ab+bc+ca>4\) (vô lí).
Vậy \(\left(x-2\right)\left(y-2\right)\left(z-2\right)=abc\le1\).
CHo x,y,z>2 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR: \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
a)Cho các số x,y,z \(\ge\)1.CMR: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\).
b) Cho x,y,z \(\ge\)0 và x\(\le1;y\le1;z\le1\)chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
c)Cho a + b\(\ge\)2.CMR: \(a^3+b^3\le a^4+b^4\)
d)Cho a2+b2\(\ge\frac{1}{4}.CMR:a^4+b^4\ge\frac{1}{32}\)
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
vì \(x,y,z\in\left[0;1\right]\)nên \(x^2\ge x^3;y^2\ge y^3;z^2\ge z^3\)
\(VT\le\frac{1}{1+x^3}+\frac{1}{1+y^3}+\frac{1}{1+z^3}\le\frac{3}{1+xyz}\)đúng theo BĐT câu a vì \(x,y,z\le1\)nên BĐT đổi chiều
Dấu = xảy ra:(x,y,z)=(0;0;0);(1;1;1) ;(1;0;1);(0;1;1);(1;1;0)
1.Cho a,b,c dương, a+b+c≤1.CMR: \(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\ge10\)
2.Cho a,b, c >0. CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82};x+y+z\le1\)
2.
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)
Tương tự ta cũng có :
\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)
\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)
Cộng theo vế của các bất đẳng thức ta được :
\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)
\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)
Mặt khác áp dụng bất đẳng thức Cauchy ta có :
\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)
\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)
\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)
\(=82\) (2)
Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)
\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
1.
Áp dụng bất đẳng thức Cauchy :
\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)
\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)
\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)
\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)
\(\ge3\cdot2\sqrt{9}-8=10\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)