Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran hoang phi
Xem chi tiết
tran hoang phi
7 tháng 1 2020 lúc 20:52

các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi

Khách vãng lai đã xóa
Black_sky
7 tháng 1 2020 lúc 20:59

a,Vì \(|x+5|\ge0\) với \(\forall x\)

=>\(A\le20\)

Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)

                                 x=-5

Vậy Max A=20 khi x=-5

Khách vãng lai đã xóa
Trần Anh Đức
7 tháng 1 2020 lúc 20:59

a, Vì /x+5/ >= 0 nên để A lớn nhất thì /x+5/ phải nhỏ nhất nên /x+5/ = 0 nên x=-5

Vậy A=20-/-5+5/=20-0=20

b,c Tương tự câu a

Khách vãng lai đã xóa
Thanh Tùng DZ
Xem chi tiết
Thắng Nguyễn
11 tháng 1 2017 lúc 20:42

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Thái Viết Nam
11 tháng 1 2017 lúc 21:12

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

Nguyễn Ngọc Minh Hoài
17 tháng 1 2018 lúc 21:07

Thắng Nguyễn làm đúng rồi đấy các bn, tham khảo nha

Q.bảo
Xem chi tiết
Ngọc Duyên DJ
Xem chi tiết
Ngọc Duyên DJ
Xem chi tiết
Huy Hoàng
18 tháng 12 2017 lúc 12:48

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

Jin Coser Vy
Xem chi tiết
Nguyễn Phương Uyên
27 tháng 1 2019 lúc 9:52

\(A=\left|x-101\right|-101\)

\(\left|x-101\right|\ge0\)

\(\Rightarrow\left|x-101\right|-101\ge-101\)

\(\Rightarrow A\ge101\)

\(\Rightarrow MIN_A=101\Leftrightarrow\left|x-101\right|=0\)

\(\Rightarrow x=101\)

vay_

Nguyễn Thị Quỳnh Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 13:32

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4

thùy nguyễn
Xem chi tiết
An Hoà
3 tháng 4 2016 lúc 8:39

Vì |y-5|>=0

=>A=|y-5|+100>=100

Dấu bằng xảy ra khi:|y-5|=0

                                    y-5=0

                                      y=5

Vậy A có giá trị nhỏ nhất là 100 khi y=5

Vì |x-2015|>=0

=>2016-|x-2015|<=2016

Dấu bằng xảy ra khi:|x-2015|=0

                                    x-2015=0

                                          x=2015

Vậy A có giá trị lớn nhất là 2016 khi x=2015

Quỳnh Chi Trần Phạm
Xem chi tiết
【๖ۣۜYυumun】
15 tháng 5 2022 lúc 15:40

2

Hồ Lê Thiên Đức
16 tháng 5 2022 lúc 0:50

Ta có A = |x - 2| + |100 - x| + |x - 8| ≥ |x - 2 + 100 - x| + |x - 8| = 98 + |x - 8| ≥ 98

Dấu = xảy ra <=> (x - 2)(100 - x) ≥ 0 và x - 8 = 0

<=> (x - 2)(x - 100) ≤ 0. Mà x - 2 > x - 100 nên x - 2 ≥ 0 và x - 100 ≤ 0 <=> 2 ≤ x ≥ 100. Mà x = 8(tm)

Vậy GTNN của A = 98 tại x = 8

Hoàng Ninh
Xem chi tiết
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:47

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:55

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

Khách vãng lai đã xóa