Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
Hảo Đào thị mỹ
Xem chi tiết
Đỗ Lê Tú Linh
22 tháng 5 2016 lúc 15:41

b1: x+2y=1 => x=1-2y

P=4xy=4y(1-2y)=4y-8y2

Ta có: y2>=0(với mọi x)

=>8y2>=0(với mọi x)

=>-8y2<=0(với mọi x)

=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)

Do đó, GTLN của P là 4y khi:y=0

Vậy GTLN của P là 0

b3: Ta có: x^4>=0(với mọi x)

=>x^4+4>=4(với mọi x)

=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)

Do đó, GTLN của A là x^2/4 khi x=0

Vậy GTLN của A là 0 tại x=0

b4:\(M=x-2.\sqrt{x-5}\)

Ta có: \(\sqrt{x-5}\)>=0(với mọi x)

=>2.\(\sqrt{x-5}\)>=0(với mọi x)

=>-2.\(\sqrt{x-5}\)<=0(với mọi x)

=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)

Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0

                                                 x-5=0

                                                x=0+5=5

Vậy GTLN của M là 5 tại x=5

 

Mai Linh
22 tháng 5 2016 lúc 19:39

Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:

P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]

=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)

Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)

=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)

Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)

 

Mai Linh
22 tháng 5 2016 lúc 19:46

 bài 4 yêu cầu phải là tìm GTNN nhé

x-2\(\sqrt{x}\)-5= \(\left(\sqrt{x}\right)^2\)-2.\(\sqrt{x}\).1+\(1^2\)-\(1^2\)-5

=\(\left(\sqrt{x}-1\right)^2\)-6

Ta có \(\left(\sqrt{x}-1\right)^2\)\(\ge\)

=>\(\left(\sqrt{x}-1\right)^2\)-6 \(\ge\)-6

Vậy M đạt giá trị nhỏ nhất là -6 dấu = xảy ra khi \(\sqrt{x}\)-1=0=> x=1

 

Phạm Minh Quang
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Mysterious Person
29 tháng 8 2018 lúc 7:52

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

Mysterious Person
29 tháng 8 2018 lúc 8:02

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)

Mysterious Person
29 tháng 8 2018 lúc 8:30

câu 2 này là câu tổ hợp của câu 1 và câu 3 thôi .

a) ta có : \(3x^2+y^2+2xy+4=7x+3y\)

\(\Leftrightarrow2\left(x-1\right)^2=-\left(x+y\right)^2+3\left(x+y\right)-2\)

\(\Leftrightarrow1\le x+y\le2\)

\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(P_{min}=1\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

b) ta có : \(3x^2+y^2+2xy+4=7x+3y\)

\(\Leftrightarrow\left(x+y\right)^2-3\left(x+y\right)+\dfrac{9}{4}=-2x^2+4x-\dfrac{7}{4}\)

\(\Leftrightarrow\left(x+y-\dfrac{3}{2}\right)^2=-2x^2+4x-\dfrac{7}{4}\ge0\)

\(\Leftrightarrow\dfrac{4-\sqrt{2}}{4}\le x\le\dfrac{4+\sqrt{2}}{4}\)

\(\Rightarrow\) GTNN của \(x\)\(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\y=\dfrac{2+\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow\) GTNN của \(x\)\(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\y=\dfrac{2-\sqrt{2}}{4}\end{matrix}\right.\)

mk nghỉ đề này không phải của lớp 8 đâu phải không :)

hotboy2002
Xem chi tiết
Nguyễn Hữu Thế
14 tháng 10 2015 lúc 12:45

rất tiếc em mới học lớp 6

Thành Nguyễn
20 tháng 1 2022 lúc 13:03

dhgxkkkkkkkkkkkkkkkkkkkkk

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết
Thành Nguyễn
20 tháng 1 2022 lúc 13:02

jnymrjd,5

Khách vãng lai đã xóa
Dương Đức Quân
Xem chi tiết
Vũ Thị Minh Nguyệt
11 tháng 7 2017 lúc 9:35

Bài 1:

\(P=2-5x^2-y^2-4xy+2x=3-\left(1-2x+x^2\right)-\left(4x^2+4xy+y^2\right)=3-\left(1-x\right)^2-\left(2x+y\right)^2\)

\(\Rightarrow GTLN=3\Leftrightarrow\hept{\begin{cases}1-x=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Dương Đức Quân
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết