Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thắm Dương
Xem chi tiết
lê thị hương giang
18 tháng 10 2017 lúc 14:58

Mk chỉ làm về dạng bình phương cộng( trừ ) một số thôi ,bn lại tự đánh giá nhé !

\(C=x^2-x+1\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(E=x^2+3x+3\)

\(=x^2+3x+\dfrac{9}{4}+\dfrac{3}{4}\)

\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{3}{4}\)

\(=\left[x^2+3.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{3}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)

\(G=3x^2-5x+3\)

\(=x^2+x^2+x^2-2x-2x-x+1+1+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-1\right)^2+\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(K=4x^2+3x+2\)

\(=4x^2+3x+\dfrac{9}{16}+\dfrac{23}{16}\)

\(=\left(4x^2+3x+\dfrac{9}{16}\right)+\dfrac{23}{16}\)

\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}\)

Doan Nam Phuong Dung
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 9 2020 lúc 22:23

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

Khách vãng lai đã xóa
Xyz OLM
11 tháng 9 2020 lúc 22:25

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

Khách vãng lai đã xóa
Cường
Xem chi tiết
Một mình vẫn ổn
Xem chi tiết
Một mình vẫn ổn
22 tháng 6 2018 lúc 19:38

Ai trả lời đúng và nhanh kết bạn fb mk tặng thẻ nạp đt 20k nha

Thanh Ngân
22 tháng 6 2018 lúc 19:38

\(x^2-3x+5=x^2-2x\) x \(\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+5\)

                            \(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(>0\)với mọi \(x\)

\(4x^2+5x+12=\left(2x\right)^2+2\) x  \(2x\)x\(\frac{5}{4}+\frac{25}{16}-\frac{25}{16}+12\)

                                 \(=\left(2x+\frac{5}{4}\right)^2\)\(+\frac{167}{16}>0\)với mọi  \(x\)

\(3x^2-9x+14=\) \(3\)\(\left(x^2-3x+\frac{14}{3}\right)\)

                                \(=3\left(x^2-2xX\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+14\right)\)

                                 = 3 { \(\left(x-\frac{3}{2}\right)^2+\frac{47}{4}\)\(>0\)

x,  X là nhân nha

Thanh Ngân
22 tháng 6 2018 lúc 19:52

\(4x^2-2x+7\)  \(=\left(2x\right)^2-2X2x+1+6\)

                                   \(=\left(2x-1\right)^2+6>=6\)

đấu bằng xảy ra <=> \(\left(2x-1\right)^2=0\)

                          <=> \(x=\frac{1}{2}\)

\(x^2-x+1=\)  \(x^2-2xX\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)

                         =  \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)

dấu bằng xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0\)

                         <=> \(x=\frac{1}{2}\)

\(2x^2+3x-5=\)  \(2\left(x^2+\frac{3}{2}x-\frac{5}{2}\right)\)

                             \(=2\left(x^2+2xX\frac{3}{4}+\frac{9}{16}-\frac{9}{16}-\frac{5}{2}\right)\)

                                = \(2\left(x+\frac{3}{4}\right)^2-\frac{49}{16}X2\) 

                                \(2\left(x+\frac{3}{4}\right)^2-\frac{49}{8}\)\(>=\frac{-49}{8}\)

dấu bằng xảy ra <=> \(2\left(x+\frac{3}{4}\right)^2\) \(=0\)

                         <=>\(x=\frac{-3}{4}\)

OoO Kún Chảnh OoO
Xem chi tiết
Nguyên
1 tháng 8 2016 lúc 9:59

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

Nguyễn Phùng Nguyên Hươn...
1 tháng 8 2016 lúc 10:34

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)

Yến Nguyễn
Xem chi tiết
Lê Chí Công
27 tháng 6 2016 lúc 16:58

x^2-x+1/4+3/4

=[x-1/2]^2+3/4>0

Vay....

2 câu kia tương tự nha

Nguyễn Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 22:02

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

minh duong le
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 10 2019 lúc 23:13

\(A=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(B=2\left(x-\frac{3}{4}\right)^2+\frac{23}{8}\)

\(C=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)

\(D=\left(x-5\right)^2+\left(3y+1\right)^2+4\)

\(E=\left(4x+1\right)^2+\left(y-2\right)^2+1\)

\(M=-\left(x+\frac{7}{2}\right)^2-\frac{11}{4}\)

\(N=-5\left(x-\frac{3}{5}\right)^2-\frac{41}{5}\)

\(C\) đề sai ví dụ \(x=3\Rightarrow C=2>0\)

\(D=-5\left(x-\frac{7}{10}\right)^2-\frac{131}{20}\)

Nguyễn Đức Quang Tuan
Xem chi tiết
Oo Bản tình ca ác quỷ oO
29 tháng 7 2016 lúc 20:02

a) vì 3x2 \(\ge0\) => 3x2 \(\ge-5x\) ; 3 \(\ge0\)

=> đa thức 3x2 - 5x + 3 > 0

t i c k nhé!! 4543545656456475678768769898968674745764553364578768568

Nguyễn Văn Nguyênn
11 tháng 7 2020 lúc 13:33

3-5+3 =1 do đó kq luôn dương 

vô cùng ngắn gọn nhưng nớ đó là mẹo chứ chớ trình bầy khi làm 

ko cô bảo =nôn côn nha =)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
11 tháng 7 2020 lúc 15:48

a, \(3x^2-5x+3=0\)

\(\Leftrightarrow\hept{\begin{cases}3x^2\ge0\\3x^2\ge-5x\\3>0\end{cases}}\)=> pt luôn dương 

b, \(2x^2+4x+3=0\)

\(\Leftrightarrow\hept{\begin{cases}2x^2\ge0\\2x^2\ge4x\\3>0\end{cases}}\)=> pt luôn dương 

Khách vãng lai đã xóa