Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hòa Lie
Xem chi tiết
Trần Thị Ngọc Trâm
26 tháng 10 2018 lúc 21:09

a)\(\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{MP}+\overrightarrow{PN}+\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{MQ}-\overrightarrow{NP}\)

b)\(\overrightarrow{MQ}+\overrightarrow{NP}=\overrightarrow{MF}+\overrightarrow{FQ}+\overrightarrow{NF}+\overrightarrow{FP}=2\overrightarrow{EF}\)

(vì vecto FM+FN=2FE=>-(FM+FN)=-2FE=>MF+NF=2EF)

kim tphuc
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 23:42

a: \(\overrightarrow{MN}+\overrightarrow{NP}+\overrightarrow{PQ}\)

\(=\overrightarrow{MP}+\overrightarrow{PQ}\)

\(=\overrightarrow{MQ}\)

ngoc phuong
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Hồng Quang
2 tháng 8 2019 lúc 19:37

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

halinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2023 lúc 12:03

Xét ΔABC có G là trọng tâm

nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\dfrac{1}{3}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\)

\(=\dfrac{1}{3}\left(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right)\)

\(=\dfrac{1}{3}\left(3\cdot\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=\dfrac{1}{3}\cdot3\cdot\overrightarrow{MG}=\overrightarrow{MG}\)

Hân Nguyễn
Xem chi tiết
Ngọc Hưng
22 tháng 9 2023 lúc 23:10

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)

\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)

\(=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OD}\right)=4\overrightarrow{MO}\)

(Do \(\overrightarrow{OA}=-\overrightarrow{OC};\overrightarrow{OB}=-\overrightarrow{OD}\))

A B C D O

Min Yoongi
Xem chi tiết
Hồng Quang
4 tháng 8 2019 lúc 12:15

Xíu nữa làm :v

Hồng Quang
4 tháng 8 2019 lúc 19:01

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))

Hồng Quang
4 tháng 8 2019 lúc 19:04

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

Út Duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2022 lúc 13:31

Câu 1: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)