Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thanh Huyền
Xem chi tiết
Kudo Shinichi
23 tháng 12 2021 lúc 17:33

Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)

Ta có: phép chia \(f\left(x\right)\) cho \(x+2\) có dư là \(R=f\left(-2\right)\)

\(\Rightarrow f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a\)

\(f\left(-2\right)=2.\left(-8\right)-3.4-2+a\)

\(f\left(-2\right)=-16-12-2+a\)

\(f\left(-2\right)=-20+a\)

Để \(f\left(x\right)\) chia hết cho \(x+2\) thì  \(R=0\) hay \(f\left(-2\right)=0\)

\(\Rightarrow-20+a=0\Leftrightarrow a=20\)

 

Nguyễn Gia Linh
Xem chi tiết
Cam 12345
Xem chi tiết
nguyen thi vang
6 tháng 1 2021 lúc 20:20

\(2x^3-3x^2+x+a=\left(x+2\right)\left(2x^2-7x+15\right)+\left(a-30\right)=Q\left(x\right).\left(x+2\right)\)

=> x=-2 thì \(2.\left(-2\right)^2-3\left(-2\right)^2+\left(-2\right)+a=Q\left(x\right).0=0\)

<=> -16 -12 -2 +a =0

<=> a -30 =0

=> a= 30.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2017 lúc 15:37

Thực hiện phép chia:

Giải bài 74 trang 32 Toán 8 Tập 1 | Giải bài tập Toán 8

2x3 – 3x2 + x + a chia hết cho x + 2

⇔ số dư = a – 30 = 0

⇔ a = 30.

Cách 2: Phân tích 2x3 – 3x2 + x + a thành nhân tử có chứa x + 2.

2x3 – 3x2 + x + a

= 2x3 + 4x2 – 7x2 – 14x + 15x + 30 + a – 30

(Tách -3x2 = 4x2 – 7x2; x = -14x + 15x)

= 2x2(x + 2) – 7x(x + 2) + 15(x + 2) + a – 30

= (2x2 – 7x + 15)(x + 2) + a – 30

2x3 – 3x2 + x + a chia hết cho x + 2 ⇔ a – 30 = 0 ⇔ a = 30.

Hoàng Gia Huy
Xem chi tiết
Alice
5 tháng 8 2023 lúc 7:55

Số dư của phép chia đa thức \(\text{f( x ) = 2x^3 - 3x^2 + x + a}\) cho \(\text{x + 2}\) là

\(\text{f ( -2 ) = 2(-2) ^3 - 3 (-2 )^2 + ( - 2 ) + a = -30 + a}\)

Để phép chia là chia hết thì số dư bằng \(\text{0}\)

Hay \(\text{-30 + a = 0}\) \(\Rightarrow\) \(\text{a = 30}\)

 

Jackson Williams
5 tháng 8 2023 lúc 10:42

a = 30

Trần Đình Thiên
5 tháng 8 2023 lúc 22:03

1

Vu Thanh Nam
Xem chi tiết
Không Tên
9 tháng 5 2018 lúc 21:10

Đa thức \(f\left(x\right)=2x^3-3x^2+x+a\)    chia hết cho đa thức  \(x+2\)

\(\Leftrightarrow\)\(f\left(-2\right)=0\)

\(\Leftrightarrow\)\(2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a=0\)

\(\Leftrightarrow\)\(-30+a=0\)

\(\Leftrightarrow\)\(a=30\)

Vậy  \(a=30\)thì   \(2x^3-3x^2+x+a\)chia hết cho  \(x+2\)

p/s:  bn có thế lm theo cách truyền thống:  đặt tính chia ra rồi đặt dư = 0 và tìm a

      hoặc dùng hệ số bất định 

๖Fly༉Donutღღ
9 tháng 5 2018 lúc 21:12

2x^3-3x^2+x+a  |  x+2

------------------|-------------

2x^3-3x^2        | 2x^2-7x+15

2x^2+4x^2

      -7x^2+x

      -7x^2-14x

            15x+a

            15x+30

\(2x^3-3x^2+x+a\div x+2\)

Để đa thức \(2x^3+3x^2+x+a⋮x+2\)

\(\Rightarrow15x+a=15x+30\)

\(\Rightarrow a-30=0\Rightarrow a=30\)

Phạm Mạnh Kiên
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 6 2021 lúc 16:55

a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)

\(\Leftrightarrow5⋮\left(x+1\right)\)

mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)

Vậy...

b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)

\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)

Vậy...

c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)

\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)

Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)

Vậy...

d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)

Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)

Vậy...

Tien Tien
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 9 2021 lúc 19:59

1) \(\Leftrightarrow\left(x-4\right)\left(x+4\right)-x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4-x\right)=0\)

\(\Leftrightarrow\left(x-4\right)4=0\)

\(\Leftrightarrow x=4\)

2) \(\left(x+3\right)^2-\left(x-3\right)\left(x+5\right)=x^2+6x+9-x^2-2x+15=4x+24\)

3) \(2x^3+3x^2-2x+a=2x^2\left(x-2\right)+7x\left(x-2\right)+16\left(x-2\right)+32+a\)

Để \(2x^3+3x^2-2x+a⋮x-2\) thì \(32+a=0\Leftrightarrow a=-32\)

hưng phúc
25 tháng 9 2021 lúc 20:00

1. 

x2 - 16 - x(x - 4) = 0

<=> (x2 - 42) - x(x - 4) = 0

<=> (x - 4)(x + 4) - x(x - 4) = 0

<=> (x + 4 - x)(x + 4) = 0

<=> 4(x + 4) = 0

<=> x + 4 = 0

<=> x = -4

2.

(x + 3)2 - (x - 3)(x + 5)

= x2 + 6x + 9 - (x2 + 5x - 3x - 15)

= x2 + 6x + 9 - x2 + 5x - 3x - 15

= x2 - x2 + 6x + 5x - 3x + 9 - 15

= 8x - 6

Hà Thi Nguyễn Hoàng
25 tháng 9 2021 lúc 20:28

1.

x2−16+x(x−4)=0

(x2−16)+x(x−4)=0

(x+4)(x−4)+x(x−4)=0

(x−4)(x+4+x)=0

(x−4)(2x+4)=0

⇒x−4=0⇒x=4

2x + 4=0 ⇒ 2x = -4 ⇒ x = - 2

Vậy x=−2 hoặc x=4.

3. Ta có : 2x3 + 3x2 - 2x + a = (x - 2)(2x2 + 7x + 12) + (a - 24)
Để phép chia trên là phép chia hết thì a - 24 = 0 => a = 24

Còn bài 2 mình khum biéc làm 😢😢😢

 

 

thảo trần
Xem chi tiết
thảo trần
Xem chi tiết