Chứng minh:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Cho các số thực dương a, b, c. Chứng minh rằng:\(\left(a^2+3\right)\)\(\left(b^2+3\right)\)\(\left(c^2+3\right)\)\(\ge4\left(a+b+c+1\right)^2\)
Chứng minh rằng \(\frac{1}{2\sqrt[3]{abc}}+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\forall a,b,c>0\)
\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Chứng minh rằng
a,\(\left(a+b-c\right)^3\)=\(a^3+b^3+c^3+3\left(a+b\right)\left(b-c\right)\left(a-c\right)\)
b,\(\left(a-b+c\right)^3\)\(=a^3-b^3+c^3+\left(a-b\right)\left(-b+c\right)\left(a+c\right)\)
Chứng minh hằng đẳng thức;
\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)^3\)
Để chứng minh hằng đẳng thức a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a) = (a+b+c)^3, ta sẽ sử dụng công thức khai triển đa thức.
Theo công thức khai triển đa thức, ta có:
(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)
Vậy, hằng đẳng thức được chứng minh.
Chứng minh các đẳng thức sau:
a) \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3-\left(a+b-c\right)^3=24abc\)
a) Ta có: \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2bc-2ab-2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ca\)
\(=a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2\)
\(=4a^2+4b^2+4c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
b) Đặt x = b + c - a
y = c + a - b
z = a + b - c
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\end{matrix}\right.\)
\(\Rightarrow a+b+c=x+y+z\)
Ta có: \(\left(a+b+c\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^2\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)
\(=3\left(x+y\right)\left[z^2+xy+xz+yz\right]\)
\(=3\left(x+y\right)\left[z\left(x+y\right)+y\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(=3.2a.2b.2c\)
\(=24abc\) (đpcm)
a, \(VP=\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=\left(a^2+b^2+c^2+ab+bc+ac\right)+\left(a^2+b^2+c^2+bc-ab-ac\right)+\left(a^2+b^2+c^2+ac-ab-bc\right)+\left(a^2+b^2+c^2+ab-ac-bc\right)\)\(=4a^2+4b^2+4c^2+\left(ab-ab-ab+ab\right)+\left(bc+bc-bc-bc\right)+\left(ac-ac+ac-ac\right)\)
\(VP=4\left(a^2+b^2+c^2\right)\)
So VP với VT ta thấy: \(VP=VT=4\left(a^2+b^2+c^2\right)\)
=> đpcm.
Bài đó cm tương tự h buồn ngủ quá
Chứng minh rằng hằng đẳng thức:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
Chứng minh rằng:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)+3\left(b+c\right)+3\left(c+a\right)\)
================
Mình cảm ơn
Chứng minh
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b) \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Biến đổi VT ta có :
+) \(a^3+b^3+c^3=ab+bc+ca\)
\(\Leftrightarrow3a^3+3b^3+3c^3=3ab+3bc+3ca\)
\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0\)
\(\Rightarrow a=b=c\)
< => VT = VP
=> đpcm
\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3=VT\)
PTĐT thành nhân tử
a) \(A=a\left(b+c-a\right)^2+b\left(c+a-b\right)^2+c\left(a+b-c\right)^2+\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
b) \(B=\left(a+b-c\right)^3+\left(a-b+c\right)^3+\left(-a+b+c\right)^3-\left(a+b+c\right)^3\)
c) \(C=bc\left(a+b\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(c-b\right)\)