a) Ta có: \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2bc-2ab-2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ca\)
\(=a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2\)
\(=4a^2+4b^2+4c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
b) Đặt x = b + c - a
y = c + a - b
z = a + b - c
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\end{matrix}\right.\)
\(\Rightarrow a+b+c=x+y+z\)
Ta có: \(\left(a+b+c\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^2\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)
\(=3\left(x+y\right)\left[z^2+xy+xz+yz\right]\)
\(=3\left(x+y\right)\left[z\left(x+y\right)+y\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(=3.2a.2b.2c\)
\(=24abc\) (đpcm)
a, \(VP=\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=\left(a^2+b^2+c^2+ab+bc+ac\right)+\left(a^2+b^2+c^2+bc-ab-ac\right)+\left(a^2+b^2+c^2+ac-ab-bc\right)+\left(a^2+b^2+c^2+ab-ac-bc\right)\)\(=4a^2+4b^2+4c^2+\left(ab-ab-ab+ab\right)+\left(bc+bc-bc-bc\right)+\left(ac-ac+ac-ac\right)\)
\(VP=4\left(a^2+b^2+c^2\right)\)
So VP với VT ta thấy: \(VP=VT=4\left(a^2+b^2+c^2\right)\)
=> đpcm.
Bài đó cm tương tự h buồn ngủ quá