Cho biểu thức B=(n-1)(n-6)-(n+1)(n-6)
Chứng minh với mọi giá trị nguyên của n thì B chia hết cho 10
Chứng minh rằng
a) n^3-n chia hết cho 6 với mọi số nghuyên n
b) biểu thức n/3+n^2/2+n^3/6 luôn có giá trị nguyên với mọi giá trị n nguyên
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )
\(\Rightarrow n^3-n⋮6\)
n^3 - n
= n( n^2 - 1 )
Xét 2 trường hợp :
1 . n là số chẵn
ð n( n^2 – 1 ) chia hết cho 2
2 . n là số lẽ
=> n^2 – 1 là số chẵn
=> n( n^2 – 1 ) chia hết cho 2
Vậy n^3 – n chia hết cho 2
Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )
Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3
=> n^3 – n chia hết cho 3
Vì n^3 – n cùng chia hết cho cả 3 và 2
=> n^3 – n chia hết cho 6
n/3 + n^2/2 + n^3/6
= 2n/6 + 3n^2/6 + n^3/6
= 2n + 3n^2 + n^3 / 6
= ( 2n + 2n^2 ) + ( n^2 + n^3 ) / 6 ( Tách 3n^2 = n^2 + 2n^2 )
= 2n( n + 1 ) + n^2( n + 1 ) / 6
= ( n + 1 )( 2n + n^2 ) / 6
= n( n + 1 )( n + 2 ) / 6
Vì n , n+1 và n+2 là 3 số tự nhiên liên tiếp
=> n( n + 1 )( n + 2 ) chia hết cho 3
Trong 3 số nguyên liên tiếp luôn tồn lại 1 số chẵn
=> n( n + 1 )( n + 2 ) chia hết cho 2
Vì n( n + 1 )( n + 2 ) cùng chia hết cho 2 và 3
=> n( n + 1 )( n + 2 ) chia hết cho 6
=> n( n + 1 )( n + 2 ) = 6k ( k\(\in Z\))
Vậy n(n + 1 )( n + 2 )/6 = 6k/6 = k hay chúng luôn nguyên .
chứng minh rằng với mọi số nguyên a thì (a+2)^2-(a-2)^2 chia hết cho 4
b) tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thưc B
A=n^3+2n^2-3n+2; B =n-1
a: \(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=a^2+4a+4-a^2+4a-4=8a⋮4\)
b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
[GẤP] Giair giúp em em cần gấp lắm ạ [GẤP]
1) Tính giá trị biểu thức
a) C=
b) B=
c) A=
d) D=
3) a) Cho biểu thức A= (n-1)(n+6)-(n+1)(n-6). Chứng minh rằng với mọi giá trị của nguyên thì A chia hết cho 10.
b) Cho biểu thức B= (4n-1)(n-4)-(m-4)(4n-1). Chứng minh rằng với mọi giá trị của m;n nguyên thì B chia hết cho 15
1) Tìm số nguyên m để:
a) Giá trị của biểu thức m- 1 chia hết cho giá trị của biểu thức 2m+ 1.
b) l 3m- 1l < 3
2) Chứng minh rằng \(3^{n+2}-2^{n+4}+3^n+2^n\)chia hết cho 30 với mọi n nguyên dương
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
1.Chứng minh 2n^2 .(n+1) - 2n(n^2 + n -3 ) chia hết cho 6 với mọi số nguyên n
2.Chứng minh n(3-2n)-(n-1)(1+4n)-1 chia hết cho 6 với mọi số nguyên n
3.Cho biểu thức : (m^2 -2m+4)(m+2)-m^3 + (m+3)(m-3)-m^2-18
Chứng minh giá trị của P khôgn phụ thuộc vào m
AI có thể giúp tớ vs đc k ạ tớ sẽ stick cho ai tl đúng nhé
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
a, <=> 2n[ n(n+1)-n2-n+3)
<=> 2n( n2+n-n2-n+3)
<=> 6n chia hết cho 6 với mọi n nguyên
b, <=> 3n-2n2-(n+4n2-1-4n) -1
<=> 3n-2n2-n-4n2+1+4n-n-1
<=> 6n-6n2
<=> 6(n-n2) chiiaia hhehethet cchchocho 6
c ,<=> m3-23-m3+m2-32-m2-18
<=>-35 => ko phụ thuộc vào biến
Chứng minh rằng
a) Biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
b) Biểu thức ( 2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi giá trị của m , n
làm ơn giúp mình với
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
1/
a/Chứng minh rằng với mọi số nguyên a thì(a+2)2-a(a-2)2chia hết cho 4
b/Tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thức B.
A=n3+2n2-3n+2; B=n-1
2/
a/Làm tính chia: (x4-2x3+2x-1):(x2-1)
b/Tìm n thuộc Z để 2n2+5n-1 chia hết cho 2n-1
3/Chứng minh rừng với mọi số nguyên n thì:
a/n2(n+1)+2n(n+1) chia hết cho 6
b/(2n-1)3-(2n-1) chia hết cho8
c/(n+7)2-(n-5)2 chia hết cho 24
Chứng minh rằng giá trị của biểu thức (n − 1)(3 − 2n) − n(n + 5) chia hết cho 3 với mọi giá trị của n
(n − 1)(3 − 2n) − n(n + 5)
= 3n − 2 n 2 – 3 + 2n − n 2 − 5n
= −3 n 2 – 3 = −3( n 2 + 1)
Vì -3 ⋮ 3 nên -3(n2+1) ⋮ 3
Vậy biểu thức chia hết cho 3 với mọi giá trị của n.