9x^2-3(10x-1)<(3x-5)^2-21
\(8x^3-12x^2+10x-3=\left(9x+1\right)\sqrt{9x-1}\)
tìm x
1) (3x-2)(9x^2+6x+4)-(2x-5)(2x+5)=(3x-1)^3-(2x+3)^2+9x(3x-1)
2) (2x+1)^3-(3x+2)^2=(2x-5)(4x^2+10x+25)+6x(2x+1)-9x^2
1) (x-2)^2-4x+8
2) x^3+10x+25x-xy^2
3) a^3+6a^2+9a-ab^2
4) a^3+10-3(2-a^3)
5) 9x^3-9x^2y-4x+4y
1: \(\left(x-2\right)^2-4x+8\)
\(=\left(x-2\right)\left(x-2-4\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
3: \(a^3+6a^2+9a-ab^2\)
\(=a\left(a^2+6a+9-b^2\right)\)
\(=a\left(a+3-b\right)\left(a+3+b\right)\)
1) 10x^2-9x-1
2) 11x^2-10x-1
1. 10x2-9x-1
= 10x2-10x+x-1
= 10x(x-1)+(x-1)
= (x-1)(10x+1)
2. 11x2-10x-1
= 11x2-11x+x-1
= 11x(x-1)+(x-1)
= (x-1)(11x+1)
1, x^4 +5x^3 +10x^2+ +15x+9=0
2. X^4 - 4x^3 - 9x^2 + 8x +4=0
2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)
1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)
\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)
\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)
mà \(x^2+x+3>0\forall x\)
nên (x+1)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: S={-1;-3}
\(E=-16x^2+3x-3=-\left(4x-\frac{3}{8}\right)^2-\frac{183}{64}\le\frac{-183}{64}\)
Vậy \(MaxE=\frac{-183}{64}\) khi \(x=\frac{3}{32}\)
Bạn xem lại đề phần \(F\) nhé.
\(G=-3x^2-9x+2=-3\left(x^2+3x-\frac{2}{3}\right)=-3[x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2]+\frac{35}{4}\)
\(=-3\left(x+\frac{3}{2}\right)^2+\frac{35}{4}\le\frac{35}{4}\forall x\)
Vậy \(MaxG=\frac{35}{4}\) khi: \(\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)
\(H=-7x^2+14x-3=-7\left(x^2-2x+\frac{3}{7}\right)=-7\left(x^2-2x+1\right)+4=-7\left(x-1\right)^2+4\le4\forall x\)
Vậy \(MaxH=4\) khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
2) (2x+1)^3-(3x+2)^2=(2x-5)(4x^2+10x+25)+6x(2x+1)-9x^2
Tìm x
( 2x + 1 )3 - ( 3x + 2 )2 = ( 2x - 5 )( 4x2 + 10x + 25 ) + 6x( 2x + 1 ) - 9x2
⇔ 8x3 + 12x2 + 6x + 1 - ( 9x2 + 12x + 4 ) = 8x3 - 125 + 12x2 + 6x - 9x2
⇔ 8x3 + 12x2 + 6x + 1 - 9x2 - 12x - 4 = 8x3 + 3x2 + 6x - 125
⇔ 8x3 + 3x2 - 6x - 3 = 8x3 + 3x2 + 6x - 125
⇔ 8x3 + 3x2 - 6x - 3 - 8x3 - 3x2 - 6x + 125 = 0
⇔ -12x + 122 = 0
⇔ -12x = -122
⇔ x = 61/6
10x2-9x-8x\(\sqrt{2x^2-3x+1}\)+3=0
\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
Đặt \(a=\sqrt{2x^2-3x+1}\ge0\) thì:
\(4x^2+3a^2-8ax=0\)
\(\Leftrightarrow\left(2x-a\right)\left(2x-3a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a}{2}\\x=\dfrac{3a}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{2x^2-3x+1}}{2}\\x=\dfrac{3\sqrt{2x^2-3x+1}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\sqrt{2x^2-3x+1}\\2x=3\sqrt{2x^2-3x+1}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}4x^2=2x^2-3x+1\\4x^2=9\left(2x^2-3x+1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x^2+3x-1=0\\\left(3-2x\right)\left(7x-3\right)=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{3}{2}\\x=\dfrac{\sqrt{17}}{4}-\dfrac{3}{4}\end{matrix}\right.\)
9x^2-10x+1
\(\Leftrightarrow9x^2-9x-x+1\)
\(\Leftrightarrow9x\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(9x+1\right)\)
chúc bạn hok tốt!!
9x^2 - 10x + 1
= 9x^2 - 9x - x +1
= (9x^2 - 9x) - ( x - 1)
= 9x ( x-1) - (x-1)
= (x-1) (9x-1)
vậy 9x^2 - 10x + 1 = (x-1) (9x-1)