Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ship Mều Móm Babie
Xem chi tiết
Học tốt
30 tháng 9 2018 lúc 22:19

Đặt A=\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow A=\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+....+\dfrac{2}{2\sqrt{100}}\)

\(\Leftrightarrow A=\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{3}}+....+\dfrac{2}{\sqrt{99}+\sqrt{99}}+\dfrac{2}{\sqrt{100}+\sqrt{100}}\)

\(\Leftrightarrow A=2\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{99}}+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\)

Ta có:

\(\dfrac{1}{\sqrt{2}+\sqrt{2}}< \dfrac{1}{1+\sqrt{2}};\dfrac{1}{\sqrt{3}+\sqrt{3}}< \dfrac{1}{\sqrt{2}+\sqrt{3}}\)

Tường tự, ta có:

\(\dfrac{A}{2}< \dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(A< 2\left(\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\right)\)

\(A< -2\left(1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...-\sqrt{99}+\sqrt{99}-\sqrt{100}\right)\)

\(A< -2\left(1-\sqrt{100}\right)\)

\(A< 18\)

Vậy\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}< 18\)

George H. Dalton
Xem chi tiết
Giang Thủy Tiên
26 tháng 5 2018 lúc 10:46

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\ \dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\ .........\\ \dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+....+\dfrac{1}{\sqrt{100}}\)( 100 phân số \(\dfrac{1}{\sqrt{100}}\) )

hay \(A>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+....+\dfrac{1}{10}\)(100 phân số \(\dfrac{1}{10}\) )

\(\Rightarrow A>\dfrac{100}{10}\\ \Rightarrow A>10\)

KL : Vậy ....

Cong Anh Le
26 tháng 5 2018 lúc 9:09

cmr...............................

Phương Phạm
Xem chi tiết
Thành Nguyễn
Xem chi tiết
Phùng Khánh Linh
1 tháng 8 2018 lúc 17:59

Ta có : \(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)\(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\)

\(\sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)\(2\left(\sqrt{n+1}-\sqrt{n}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)

Từ \(\left(1;2\right)\text{⇒ }đpcm\)

Phùng Khánh Linh
1 tháng 8 2018 lúc 18:16

Làm nốt phần áp dụng nèViolympic toán 9 Violympic toán 9

Bùi Thị Thanh Trúc
1 tháng 8 2018 lúc 17:53

fuck ***** fuck ***** fuck you

Nguyễn Thu Trà
Xem chi tiết
....
Xem chi tiết
An Thy
11 tháng 6 2021 lúc 18:18

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)

 

missing you =
11 tháng 6 2021 lúc 18:14

cả 2 ý bạn trục căn thức ở mấu là xong nhé:

vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy

Thái Viết Nam
Xem chi tiết
Nguyễn Linh
17 tháng 10 2018 lúc 22:40

Rút gọn biểu thức chứa căn bậc hai

Phạm Phương Anh
Xem chi tiết
Thành Phan
Xem chi tiết
Linh_Windy
3 tháng 10 2017 lúc 20:15

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)

\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\.............\\\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)

Suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{99}{\sqrt{100}}\)

\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{99}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}\)

\(\)\(linh>10\left(đpcm\right)\)

Bài này ko phải 100 nhé

Thành Phan
3 tháng 10 2017 lúc 20:08

bạn nào giải giúp mình vớikhocroi