Với x>1, GTNN biểu thức \(A=5x+\frac{180}{x-1}\)
với x > 1, biểu thức \(A=5x+\frac{180}{x-1}\)đạt giá trị nhỏ nhất khi x = ....?
\(A=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5=60+5=65\)
với x > 1 biểu thức \(A=5x+\frac{180}{x-1}\)
đạt giá trị nhỏ nhất khi x bằng bao nhiêu?
\(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5\)
Với x>1 tìm GTNN của: \(P=5x+\frac{180}{x-1}\)
(x-1)2=180/5=36
=>x-1=6 (vì x>1)
=>x=7 chứ
Sửa lại: Tìm GTNN
x > 1 nên x - 1 > 0
Áp dụng BĐT Cauchy ta có : P = \(5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5=2.30+6=65\)
Dấu "=" xảy ra <=> 5.(x - 1) = 180/(x-1) <=> (x -1)2 = 36 => x - 1 = 6 => x = 7
Vậy Min P = 65 khi x = 7
Với x > 1 , biểu thức \(B=5x+\frac{180}{x-1}\) đạt giá trị nhỏ nhất khi x = ?
Cho biểu thức \(B=\frac{2}{1-5x}+\frac{1}{x}\) với \(0\le x\le\frac{1}{5}\). Tìm GTNN của B
đồng tình vs chu thị mai !!!
Tìm GTNN của các biểu thức sau :
A=4x^2+4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10x+3}{\left(x-1\right)^2}\)
TÌm GTLN , GTNN của biểu thức sau : D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
c)Đề sai:v
d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!
\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)
\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)
Đẳng thức xảy ra khi x = 2
Tìm GTNN của biểu thức sau:
B=\(\dfrac{-8+11}{x^2+5}\) \(D=\dfrac{x^2-2x+2}{x^2+x+1}\)
\(C=\dfrac{-4x-1}{2x^2+1}\)
Cho biểu thức: \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Rút gọn biểu thức A. Tính giá trị biểu thức A khi x = 9
2. Khi x thỏa mãn ĐKXĐ hãy tìm GTNN của biểu thức B, với B = A(x-1)
Vs x>1 giá trị nhỏ nhất của biểu thức A=5x +180:(x-1) ?
cách 1:A= 5x + 180/(x-1)
=5(x-1) +180/(x-1) + 5 >= 2√(5(x-1)*180/(x-1)) +5 = 65
( Chú ý kết hợp vs điều kiện x>1)
Vậy A(min)= 65
<=> 5(x-1) -180/(x-1) =0
<=> x² - 2x -35 =0
<=> x=7 or x=-5( KTm)
cách 2:có 5x + 180 / (x-1) = 5(x-1) + 180 / (x-1) +5
vì x>1 => 5(x-1)>0 ; 180/(x-1) có nghĩa và >0
áp dụng bất đẳng thức côsi cho 2 số k âm ta có
5(x-1) + 180/(x-1) >= 2căn2[5(x-1). 180/(x-1) ]=60
=> 5(x-1) + 180 /(x-1) +5 >=60+5=65
dấu = xảy ra <=> 5(x-1) = 180/(x-1)
<=> 5 (x-1)^2 = 180
<=>......
<=> x = 7( thỏa mãn đk)
hoặc x=-5( loại )
vậy min <=> x = 7
chúc bạn học tốt
tìm GTNN của các biểu thức sau
A=4x^2=4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Tìm GTLN của biểu thức sau
C=\(\frac{x^2+5x+7}{x^2+4x+4}\)
D=\(\frac{x^2-2x+2020}{x^2}\)