Tìm GTNN của các biểu thức sau :
A=4x^2+4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10x+3}{\left(x-1\right)^2}\)
TÌm GTLN , GTNN của biểu thức sau : D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Tìm GTNN của các biểu thức sau
A=4x^2+4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
bài 2 : thực hiện phép tính
a. \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
b. \(\frac{12x}{5y^3}.\frac{15y^4}{8x^3}\)
c.\(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)
d.\(\frac{x^{2-4}}{3x+12}.\frac{x+4}{2x-4}\)
e.\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
f.\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
g.\(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6}\)
h.\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
i.\(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}\)
j.\(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}\)
k.\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
Giải các bất phương trình sau :
a) \(15-2x\left(1-x\right)< 2x^2-4x+5\)
b) \(x^2-\frac{x\left(3x+2\right)}{3}< \frac{x-6}{3}\)
c) \(1+\frac{x+4}{3}< x-\frac{x-3}{2}\)
d) \(\left(\frac{2x+1}{2}\right)^2+\frac{3x\left(1-x\right)}{3}-\frac{5x}{4}\le1\)
Giải các phương trình sau:
a) \(\left(\frac{x-2}{x-1}\right)^2-5\left(\frac{x+2}{x+1}\right)^2+4\left(\frac{x^2-4}{x^2-1}\right)=1\)
b) \(\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
c) \(x.\frac{4-x}{x+2}.\left(\frac{8-2x}{x+2}\right)=3\)
d) \(\frac{1}{3x-2020}+\frac{1}{4x-2018}+\frac{1}{5x-2017}=\frac{1}{12x-2019}\)
1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1