\(\dfrac{9^{15}\times25^3\times4^3}{3^{10}\times50^6}\)
\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{48\times49\times50}\)
\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{48\times49\times50}\)
\(=\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{48\times49}-\dfrac{1}{49\times50}\)
\(=\dfrac{1}{1\times2}-\dfrac{1}{49\times50}\)
\(=\dfrac{1}{2}-\dfrac{1}{2450}\)
\(=\dfrac{612}{1225}\)
\(\text{#}Toru\)
Tính nhanh:\(\frac{1\times2\times3+2\times4\times6+3\times6\times9+4\times8\times12+5\times10\times15}{1\times3\times5+2\times6\times10+3\times9\times15+4\times12\times20+5\times15\times25}-\frac{1+2+3+2+4+6+3+6+9+4+8+12+5+10+15}{1+3+5+2+6+10+3+9+15+4+12+20+5+15+25}\)
Bài 1:
a, T = \(\frac{9^{14}\times25^6\times8^7}{18^{12}\times625^3\times24^3}\)
b, A = \(\frac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
a) \(T=\frac{9^{14}\times25^6\times8^7}{18^{12}\times625^3\times24^3}\)
\(=\frac{\left(3^2\right)^{14}\times25^6\times\left(2^3\right)^7}{\left(2\times3^2\right)^{12}\times\left(25^2\right)^3\times\left(3\times2^3\right)^3}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{12}\times3^{24}\times25^6\times3^3\times2^9}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{\left(2^{12}\times2^9\right)\times\left(3^{24}\times3^3\right)\times25^6}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{21}\times3^{27}\times25^6}=3\)
b) \(A=\frac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
\(=\frac{5\times\left(2^2\right)^{15}\times\left(3^2\right)^9-2^2\times3^{20}\times\left(2^3\right)^9}{5\times2^9\times\left(2\times3\right)^{19}-7\times2^{29}\times\left(3^3\right)^6}\)
\(=\frac{5\times2^{30}\times3^{18}-2^2\times3^{20}\times2^{27}}{5\times2^9\times2^{19}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{5\times2^{30}\times3^{18}-2^{29}\times3^{20}}{5\times2^{28}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{2^{29}\times3^{18}\times\left(5\times2-3^2\right)}{2^{28}\times3^{18}\times\left(5\times3-7\times2\right)}\)
\(=\frac{2\times\left(10-9\right)}{15-14}=\frac{2\times1}{1}=2\)
Tính giá trị biểu thức bằng cách thuận tiện nhất a\(2\times3\times4\times8\times50\times25\times125\), b,\(1998\times1996+1997\times11+1985\)
2x3x4x8x50x25x125
=(2x50)x(4x25)x(8x125)x3
=100x100x1000x3
=10000000x3=30000000
30000000 nha minh ban k cho mik mik se tra lai
Bài 2: Tính
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}\)
b)\(\dfrac{8\times3\times4}{16\times3}\)
c)\(\dfrac{4\times5\times6}{3\times10\times8}\)
(Các bạn tách các số ra rồi gạch, gạch xong thì nhân lại và ra kết quả) Thanks
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}=\dfrac{3\times2\times5\times25\times7\times8}{25\times3\times8\times3\times4\times2\times7}=\dfrac{5}{3\times4}=\dfrac{5}{12}\)
b) \(\dfrac{8\times3\times4}{16\times3}=\dfrac{8\times3\times2\times2}{8\times2\times3}=2\)
c) \(\dfrac{4\times5\times6}{3\times10\times8}=\dfrac{4\times5\times3\times2}{3\times5\times2\times4\times2}=\dfrac{1}{2}\)
giúp mik với ạ, mình sẽ tick ạ! Thanks.
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
1/* Chứng minh rằng:
\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+..+\dfrac{1}{50}\)
2/* Cho:
A=\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+.....+\dfrac{1}{99\times100}\). Chứng minh rằng:\(\dfrac{7}{12}< A>\dfrac{5}{6}\)
Các bn giúp mk những bài này nha!
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy \(x=-2004\)
1/ Ta có :
\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+....+\dfrac{1}{49\times50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.....+\dfrac{1}{50}\right)\)
\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{50}\right)\times2\)
\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{25}\right)\)
\(\Rightarrow\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}\)
Hay \(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...+\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)
~ Học tốt nha ~
\(\frac{2^{19}\times27^3+15\times4^9\times9^4}{6^9\times2^{10}+12^{10}}\)
= 2^19 x (3^3)^3 + 3 x 5 x (2^2)^9 x (3^2)^4 / 2^9 x 3^9 x 2^10 + (2^2)^10 x 3^10
= 2^19 x 3^9 + 3^9 x 2^18 x 5 / 2^19 x 3^9+2^20 x 3^10
= 3^9 x 2^18 x (2+5) / 3^9 x 2^19 x (1 + 2 x 3)
= 3^9 x 2^18 x 7 / 3^9 x 2^19 x 7 = 1/2
k mk nha
\(\frac{l-5l\times7^4+7^3\times25}{7^5\times125-7^3\times50}\)TÍNH NHANH
Tính nhanh : \(\frac{1}{8}\div12,5\%+\left(\frac{1\times2\times3+6\times4\times2}{5\times3\times1+5\times15\times25}+\frac{1}{2}\div50\%\right)-\left(\frac{1}{16}\div6,25\%+\frac{3+2+1+2+4+6}{1+3+5+25+15+5}\right)-\frac{1}{4}\div25\%\)
\(\frac{1}{8}=12,5\%\) ; \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\)
Thay vào trên mà tính.
= \(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)