Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hằng Đoàn

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

1/* Chứng minh rằng:

\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+..+\dfrac{1}{50}\)

2/* Cho:

A=\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+.....+\dfrac{1}{99\times100}\). Chứng minh rằng:\(\dfrac{7}{12}< A>\dfrac{5}{6}\)

Các bn giúp mk những bài này nha!

 Mashiro Shiina
16 tháng 7 2017 lúc 19:53

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Lê Gia Bảo
16 tháng 7 2017 lúc 20:01

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy \(x=-2004\)

Lê Gia Bảo
16 tháng 7 2017 lúc 20:14

1/ Ta có :

\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+....+\dfrac{1}{49\times50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.....+\dfrac{1}{50}\right)\)

\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{50}\right)\times2\)

\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{25}\right)\)

\(\Rightarrow\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}\)

Hay \(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...+\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)

~ Học tốt nha ~

Lê Gia Bảo
16 tháng 7 2017 lúc 20:29

2/ Ta có : \(A=\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)

\(=\left(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}\right)+\left(\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\right)\)

\(=\dfrac{7}{12}+\left(\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\right)>\dfrac{7}{12}\) (1)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.....+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{100}\right)\times2\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+....+\dfrac{1}{100}\)

Dãy số trên có : \(100-51+1=50\) số hạng.

mà 50 chia hết cho 10 nên ta nhóm 10 số vào một nhóm.

\(A=\left(\dfrac{1}{51}+...+\dfrac{1}{60}\right)+\left(\dfrac{1}{61}+...+\dfrac{1}{70}\right)+\left(\dfrac{1}{71}+...+\dfrac{1}{80}\right)+\left(\dfrac{1}{81}+...+\dfrac{1}{90}\right)+\left(\dfrac{1}{91}+...+\dfrac{1}{100}\right)\)

\(< \dfrac{1}{50.10}+\dfrac{1}{60.10}+\dfrac{1}{70.10}+\dfrac{1}{80.10}+\dfrac{1}{90.10}=\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7.3}=\dfrac{167}{210}< \dfrac{175}{210}=\dfrac{5}{6}\)

\(\Rightarrow A< \dfrac{5}{6}\) (2)

Từ (1) và (2) \(\Rightarrow\) đpcm


Các câu hỏi tương tự
Lê Sỹ Phúc
Xem chi tiết
Ánh Nắng Ban Mai
Xem chi tiết
37-Đặng Thị Anh Thư-7A2...
Xem chi tiết
Nguyễn Bá Hải
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Trần Ngọc
Xem chi tiết
Tên Không
Xem chi tiết
Trần Thị Đào
Xem chi tiết