\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
1/* Chứng minh rằng:
\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+..+\dfrac{1}{50}\)
2/* Cho:
A=\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+.....+\dfrac{1}{99\times100}\). Chứng minh rằng:\(\dfrac{7}{12}< A>\dfrac{5}{6}\)
Các bn giúp mk những bài này nha!
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy \(x=-2004\)
1/ Ta có :
\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+....+\dfrac{1}{49\times50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.....+\dfrac{1}{50}\right)\)
\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{50}\right)\times2\)
\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{25}\right)\)
\(\Rightarrow\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}\)
Hay \(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...+\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)
~ Học tốt nha ~
2/ Ta có : \(A=\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)
\(=\left(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}\right)+\left(\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\right)\)
\(=\dfrac{7}{12}+\left(\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\right)>\dfrac{7}{12}\) (1)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.....+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{100}\right)\times2\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+....+\dfrac{1}{100}\)
Dãy số trên có : \(100-51+1=50\) số hạng.
mà 50 chia hết cho 10 nên ta nhóm 10 số vào một nhóm.
\(A=\left(\dfrac{1}{51}+...+\dfrac{1}{60}\right)+\left(\dfrac{1}{61}+...+\dfrac{1}{70}\right)+\left(\dfrac{1}{71}+...+\dfrac{1}{80}\right)+\left(\dfrac{1}{81}+...+\dfrac{1}{90}\right)+\left(\dfrac{1}{91}+...+\dfrac{1}{100}\right)\)
\(< \dfrac{1}{50.10}+\dfrac{1}{60.10}+\dfrac{1}{70.10}+\dfrac{1}{80.10}+\dfrac{1}{90.10}=\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7.3}=\dfrac{167}{210}< \dfrac{175}{210}=\dfrac{5}{6}\)
\(\Rightarrow A< \dfrac{5}{6}\) (2)
Từ (1) và (2) \(\Rightarrow\) đpcm