Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen ngoc linh
Xem chi tiết
Hàn Vũ Nhi
Xem chi tiết
Nhật Hạ
13 tháng 7 2019 lúc 17:56

x2 - 2x + y2 - 4y + 7 = (x2 - 2x + 1) + ( y2 - 4y + 4) + 2 = (x - 1)2 + (y - 2)2 + 2

Vì (x - 1)2 ≥ 0 \(\forall\)x

    (y - 2)2 ≥ 0 \(\forall\)x

=> (x - 1)2 + (y - 2)2 ≥ 0 \(\forall\)x

=> (x - 1)2 + (y - 2)2 + 2  ≥ 2 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy GTNN của x2 - 2x + y2 - 4y +7 = 2 khi x = 1; y = 2

Nobi Nobita
5 tháng 9 2020 lúc 15:43

Đặt \(A=x^2-2x+y^2-4y+7\)

\(\Rightarrow A=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x,y\)

hay \(A\ge2\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Khách vãng lai đã xóa
Kien Pham Tran Trung
Xem chi tiết
Lê Ng Hải Anh
10 tháng 7 2018 lúc 9:01

 Ta có: \(x^2-2x+y^2-4y+7\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì:\(\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x\)

Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy:GTNN của bt là 2 tại x=1,y=2

Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

ngọn gió cô đợn
Xem chi tiết
Bùi Thế Hào
24 tháng 3 2018 lúc 15:37

A=x2-2x+1+y2-4y+4+2 = (x-1)2+(y-2)2 + 2\(\ge\)2 Với mọi x, y

=> Amin = 2 đạt được khi x=1 và y=2

Hoàn Biền Văn Vũ
Xem chi tiết
Nguyễn Huệ Lam
12 tháng 7 2017 lúc 8:44

\(A=x^2-2x+y^2-4y-7=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-12.\)

\(=\left(x-1\right)^2+\left(y-2\right)^2-12\)

Vì \(\left(x-1\right)^2+\left(y-2\right)^2\ge0\)nên \(\left(x-1\right)^2+\left(y-2\right)^2-12\ge-12\)

Vậy GTNN của A là -12 tại \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Mai Linh Chi
Xem chi tiết
Akai Haruma
20 tháng 7 lúc 22:44

Lời giải:

$A=x^2+y^2-2x+4y+2015$

$A=(x^2-2x+1)+(y^2+4y+4)+2010$

$=(x-1)^2+(y+2)^2+2010\geq 2010$

$\Rightarrow A_{\min}=2010$

Giá trị này đạt tại $x-1=y+2=0$

$\Leftrightarrow x=1; y=-2$

Kị tử thần
Xem chi tiết
ʚDʉү_²ƙ⁶ɞ‏
11 tháng 10 2019 lúc 20:28

\(A=x^2-2x+y^2-4y+6\)\(6\)

    \(=x^2-2x+1+y^2-4y+4+1\)

     \(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

Do đó GTNN của A là 1 khi và chỉ khi:\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy ...

BIỂN VŨ
Xem chi tiết
Sunny
Xem chi tiết
anonymous
16 tháng 12 2020 lúc 21:39

Ta có:

\(A=x^2+y^2+xy-2x-4y+2016\\ =\left(x+\dfrac{y}{2}-1\right)^2+\dfrac{3}{2}\left(y-1\right)^2+\dfrac{4027}{2}\\ \ge\dfrac{4027}{2}\)

Dấu bằng xảy ra khi và chỉ khi: 

\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)