Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn My
Xem chi tiết
tth_new
7 tháng 10 2017 lúc 15:41

Lần sau viết rõ yêu cầu đề nhá!

CMR: \(\frac{a}{b+c+1}=\frac{b}{a+c+1}=\frac{c}{a+b+1}=a+b+c\)

Ta có: 3 số a , b , c.Theo tính chất tỉ dãy số bằng nhau ta có:

\(\frac{a}{b+c+1}=\frac{b}{a+c+1}=\frac{c}{a+b+1}=a+b+c=1\)

\(\Rightarrow a=b=c=1-3=\left(-2\right)\)

Dấu = xảy ra khi \(a=b=c=\left(-2\right)\)

Ps: Chả biết đúng hay không , nếu sai xin bạn đừng dis, hổm đến giờ mk bị nhiều cái dis lắm rồi!

Xem chi tiết
Phùng Trần Hà Phúc
Xem chi tiết
Nguyễn Mai Chi
Xem chi tiết
Nguyễn Mai Chi
Xem chi tiết
Akai Haruma
14 tháng 8 2019 lúc 12:23

Lời giải:

a)

\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)

\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)

b)

\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)

\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)

c)

\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)

d)

\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)

\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)

\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)

Akai Haruma
14 tháng 8 2019 lúc 12:25

Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$

Akai Haruma
12 tháng 8 2019 lúc 16:55

Lời giải:

a)

\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)

\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)

b)

\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)

\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)

c)

\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)

d)

\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)

\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)

\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)

Evil
Xem chi tiết
Phùng Minh Quân
14 tháng 10 2018 lúc 17:47

\(1)\)\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)

\(\Leftrightarrow\)\(\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)

\(\Leftrightarrow\)\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}=\frac{10a+10b+10c}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{10a}{b}=10\)\(\Leftrightarrow\)\(a=b\)

\(\frac{10b}{c}=10\)\(\Leftrightarrow\)\(b=c\)

\(\frac{10c}{a}=10\)\(\Leftrightarrow\)\(c=a\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(A=\left(a-b\right)\left(b-c\right)\left(c-a\right)+2016=2016\)

\(2)\)\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Leftrightarrow\)\(10a+11b+c=11a+11b\)\(\Leftrightarrow\)\(c=a\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Leftrightarrow\)\(10b+11c+a=11b+11c\)\(\Leftrightarrow\)\(a=b\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Leftrightarrow\)\(10c+11a+b=11c+11a\)\(\Leftrightarrow\)\(b=c\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(M=\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016=2.2.2+2016=2024\)

Chúc bạn học tốt ~ 

tth_new
14 tháng 10 2018 lúc 17:56

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

hay \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Do các tử số trên bằng nhau nên các mẫu số cũng bằng nhau hay \(b+c+d=a+c+d=a+b+d=a+b+c\)

Suy ra a = b =c =d

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Phùng Minh Quân
14 tháng 10 2018 lúc 18:03

\(3)\)\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Leftrightarrow\)\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì các tử bằng nhau nên mẫu cũng bằng nhau : 

+) Với \(b+c+d=a+c+d\)\(\Leftrightarrow\)\(a=b\)

+) Với \(a+b+d=a+b+c\)\(\Leftrightarrow\)\(c=d\)

+) Với \(a+c+d=a+b+d\)\(\Leftrightarrow\)\(b=c\)

\(\Rightarrow\)\(a=b=c=d\)

\(\Rightarrow\)\(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Chúc bạn học tốt ~ 

Cô bé hạnh phúc
Xem chi tiết
Vu Do Tuan
Xem chi tiết
ngonhuminh
5 tháng 12 2016 lúc 16:01

\(x^2-x+2=A+B\left(x-1\right)+C\left(x-1\right)^2\)

\(=A+Bx-B+Cx^2-2Cx+C=Cx^2-\left(2C-B\right)x+\left(A+C\right)\)

\(\hept{\begin{cases}C=1\\2C-B=1\\A+C=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}C=1\\B=1\\A=1\end{cases}}\)

Trinh Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 1 2017 lúc 12:29

Cách 1. Áp dụng BĐT AM-GM : 

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\)\(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)

Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)