Tìm GTLN của biểu thức:
K= -5x2+20x-2021
tìm gtln của biểu thức
P = 2 - 5x2 - y2 - 6xy + 2x
Biểu thức không có max. Bạn coi lại đề.
tìm GTLN của biểu thức
D=2023-8x+2y+4xy-y2-5x2
\(D=2023-8x+2y+4xy-y^2-5x^2\)
\(=-\left(y^2+5x^2-4xy-2y+8x-2023\right)\)
\(=-\left(y^2-2.y.\left(2x+1\right)+\left(2x+1\right)^2-\left(2x+1\right)^2+5x^2+8x-2023\right)\)
\(=-\left[\left(y-2x-1\right)^2-4x^2-4x-1+5x^2+8x-2023\right]\)
\(=-\left[\left(y-2x-1\right)^2+x^2+4x-2024\right]\)
\(=-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]+2028\)
Vì \(-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]\le0\forall x,y\)
\(MaxD=2028\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
tìm GTNN của biểu thức A= 2x2-8x+1
Tìm GTLN của B = -5x2-4x+1
cảm ơn nha^^
a: Ta có: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=2
tìm GTLN của biểu thức
C=-x2-4x-y2+8y+2
D=2023-8x+2y+4xy-y2-5x2
\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)
Tìm GTLN của các biểu thức sau:
a)3-x^2+2x (GTLN)
b)4X^2-20X+40(GTLN)
Tìm GTLN của biểu thức :
\(A=x^4-6x^3+9x^2+6x+2021\)
Tìm GTLN của biểu thức A=20x2 + 45y2 - 68x + 60y - 48xy =24
Cho biểu thức: F= \(\dfrac{x}{x-1}-\dfrac{4x^2+2}{1-x^2}-\dfrac{x-2}{x+1}\) với x≠+_1
a) chứng minh rằng: F=\(\dfrac{4x}{x-1}\)
b) tính giá trị của F khi lx+2l=1
c) tìm GTLN của biểu thức: K= F(x-1)-x2-2021
\(a,F=\dfrac{x^2+x+4x^2+2-x^2+3x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x}{x-1}\\ b,\left|x+2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1-2=-1\left(ktm\right)\\x=-1-2=-3\end{matrix}\right.\Leftrightarrow x=-3\\ \Leftrightarrow F=\dfrac{-12}{-4}=3\\ c,K=F\left(x-1\right)-x^2-2021=4x-x^2-2021\\ K=-\left(x^2-4x+4\right)-2017=-\left(x-2\right)^2-2017\le-2017\\ K_{max}=-2017\Leftrightarrow x=2\left(tm\right)\)
tìm gtln (gtnn) của biểu thức: (x^4+1)^2+2021
mong mọi ng giúp em nhanh ạ
Lời giải:
$x^4\geq 0$ với mọi $x$
$\Rightarrow x^4+1\geq 1$
$\Rightarrow (x^4+1)^2\geq 1$
$\Rightarrow (x^4+1)^2+2021\geq 1+2021=2022$
Vậy GTNN của biểu thức là $2022$. Giá trị này đạt tại $x=0$