Lời giải:
$K=-5x^2+20x-2021=-2001-5(x^2-4x+4)=-2001-5(x-2)^2$
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow K=-2001-5(x-2)^2\leq -2001$
Vậy $K_{\max}=-2001$ khi $(x-2)^2=0\Leftrightarrow x=2$
Ta có: \(K=-5x^2+20x-2021\)
\(=-5\left(x^2-4x+\dfrac{2021}{5}\right)\)
\(=-5\left(x^2-4x+4+\dfrac{2001}{5}\right)\)
\(=-5\left(x-2\right)^2-2001\le-2001\forall x\)
Dấu '=' xảy ra khi x=2