Phân tích đa thức thành nhân tử:
\(x^3+12x+36\)
phân tích đa thức thành nhân tử x^4-2x^3-12x^2+12x+36
\(x^4-2x^3-12x^2+12x+36=x^4+x^2+36-2x^3+12x-12x^2-x^2\)
\(=\left(x^2-x-6\right)^2-x^2=\left(x^2-6\right)\left(x^2-2x-6\right)\)
Phân tích đa thức thành nhân tử:
\(x^2+12x+36=0\)
\(4x^2-4x+1=0\)
\(x^3+6x^2+12x+8=0\)
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
phân tích đa thức thành nhân tử và tìm x
`a, 8x (x-3)+x-3=0`
`b, x^2+36=12x`
a) \(8x\left(x-3\right)+x-3=0\)
\(\Rightarrow8x\left(x-3\right)+\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{8}\end{matrix}\right.\)
b) \(x^2+36=12x\)
\(\Rightarrow x^2-12x+36=0\)
\(\Rightarrow\left(x-6\right)^2=0\)
\(\Rightarrow x=6\)
Bài 3 Tính nhanh
A, 892^2+892.216+108^2
B, 36^2+26^2-52.36
Bài 4 Phân tích đa thức sau thành nhân tử
X^3-2x^2+x
5(x-y)-y(x-y)
36-12x+x^2
4x^2+12x-9
Bài 4:
\(x^3-2x^2+x=x\left(x-1\right)^2\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(x^2-12x+36=\left(x-6\right)^2\)
Phân tích đa thức thành nhân tử
4x^2-28xy+49y^2
x^2 + 8xy+16x^2y^2
36-12x+x^2
a) Ta có: \(4x^2-28xy+49y^2\)
\(=\left(2x\right)^2-2\cdot2x\cdot7y+\left(7y\right)^2\)
\(=\left(2x-7y\right)^2\)
b) Ta có: \(x^2+8xy+16y^2\)
\(=x^2+2\cdot x\cdot4y+\left(4y\right)^2\)
\(=\left(x+4y\right)^2\)
c) Ta có: \(x^2-12x+36\)
\(=x^2-2\cdot x\cdot6+6^2\)
\(=\left(x-6\right)^2\)
\(\left(2x-7y\right)^2\)
\(\left(6-x\right)^2\)
4x2 - 28xy + 49y2
= (2x)2 - 2.2x.7y + (7y)2
= (2x - 7y)2
x2 + 8x2y + 16x2y2 đề có bị thiếu không , nên mình bổ sung nhé
= x2 + 2.x.4xy + (4xy)2
= (x + 4xy)2
36 - 12x + x2
= 62 + 2.6.x + x2
= (6 + x)2
Chúc bạn học tốt
Phân tích đa thức thành nhân tử:
a) x^4 - y^4
b) 4x^2+12x+9
c) 36-12x+x^2
a) \(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
c) \(36-12x+x^2=x^2-12x+36=x^2-6x-6x+36\)
\(=x\left(x-6\right)-6\left(x-6\right)=\left(x-6\right)\left(x-6\right)=\left(x-6\right)^2\)
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(4x^2+12x+9\)
\(=\left(2x\right)^2+2.2x.3+9\)
\(=\left(2x+3\right)^2\)
\(36-12x+x^2\)
\(=6^2-2.6.x+x^2\)
\(=\left(6-x\right)^2\)
phân tích đa thức thành nhân tử ( x^3 + 27 ) - ( 4x - 12x )
Phân tích đa thức thành nhân tử
x\(^3\)-6x\(^2\)+12x-7
\(=\left(x^3-6x^2+12x-8\right)+1\\ =\left(x-2\right)^3+1\\ =\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)\\ =\left(x-1\right)\left(x^2-5x+7\right)\)
phân tích đa thức thành nhân tử : x^4 +3x^3 +12x -16
\(x^4+3x^3+12x-16\)
\(=x^4+4x^3+4x^2+16x-x^3-4x^2-4x-16\)
\(=x\left(x^3+4x^2+4x+16\right)-\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left[x^2\left(x+4\right)+4\left(x+4\right)\right]\)
\(=\left(x-1\right)\left(x+4\right)\left(x^2+4\right)\)
phân tích đa thức thành nhân tử x^3+y^3+6x^2+12x+8
\(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)