chứng tỏ rằng tổng của hai số tự nhiên liên tiếp là số lẻ
Chứng tỏ rằng tổng của hai số tự nhiên liên tiếp là số số lẻ .
Ơ , mình giải lộn nhỉ?
Giải
Số tự nhiên đầu có dạng: 2k + 1 , số tiếp theo dạng 2k + 2
Vậy tổng trên có dạng là:
2k + 1 + 2k + 2 = 4k + 3 = 3(k + 1)
Vì 3(k + 1) là số lẻ
Ta có ĐPCM
a) Chứng tỏ rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3
b) Chứng minh rằng: Hai số lẻ liên tiếp bao giờ cũng nguyên tố bằng nhau
a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3
b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3
Gọi D là ước số chung của chúng.
Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ
.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!
chúc bạn học tập tốt !!!
cho hai số tự nhiên lẻ liên tiếp .Chứng tỏ tổng của chúng luôn là số chẵn
gọi 2 số đó là a và a + 2
ta có: a + a + 2 = 2a + 2
mà 2a là số chẵn nên 2a + 2 cũng là số chẵn
=> a + a + 2 chẵn
=> đpcm
t i c k nhé!!! 45645676578769
Chứng tỏ rằng bình phương của 1 số lẻ bằng tổng bình phương của 2 số tự nhiên liên tiếp trong đó số lớn cũng bằng tổng bình phương của 2 số tự nhiên liên tiếp
chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?
Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN)
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
k mình nha
không nên:
Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.Chứng tỏ rằng tổng của N số tự nhiên liên tiếp là số chia hết cho N, nếu N là số lẻ
Theo đề bài, gọi N số lẻ liên tiếp là : m, m+2, m+4, .....m + (n-1).2
-> Tổng của N số lẻ liên tiếp :
m + (m+2) + (m+4) + .... + [m+(n-1).2] (n số hạng)
= m+m+2+m+4+....+m+n-1.2
= (m+m+m...+m) + [2+4+...+(n-1).2]
= m.n+2.(1+2+...+n+1)
= m.n+2.(n-1).(n-1+1) : 2
= m.n+(n-1).n
= (m+n-1).n \(⋮\)N
=> Tổng của N STN liên tiếp chia hết cho N, nếu N lẻ
DUYỆT MK NHA ! THANKS ~~~
Chứng tỏ rằng tổng của n số tự nhiên liên tiếp là một số chia hết cho n nếu n là số lẻ
Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là một số chia hết cho n, nếu n lẻ.
b) Tổng của số n số tự nhiên liên tiếp là một số không chia hết cho n, nếu n chẵn.
bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf
chứng tỏ rằng:
a)Tổng của 2 số lẻ hoặc hai số chẵn luôn chia hết cho 2
b) Tổng của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
a) +) Nếu 2 số đó cùng chẵn \(\Rightarrow\)cả 2 số đó đều \(⋮2\)\(\Rightarrow\)Tổng \(⋮2\)(1)
+) Nếu 2 số đó cùng lẻ
Gọi 2 số lẻ lần lượt là \(2a+1\)và \(2b+1\)( \(a,b\inℕ\))
Ta có: \(\left(2a+1\right)+\left(2b+1\right)=4b+2=2\left(2b+1\right)⋮2\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
b) Gọi 3 số tự nhiên liên tiếp là \(a\), \(a+1\), \(a+2\)( \(a\inℕ\))
Ta có: \(a+\left(a+1\right)+\left(a+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
Chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?