\(A=\dfrac{72^3.54^2}{108^4}\)
Tính :
D = \(\dfrac{72^3.54^2}{108^4}\)
\(\dfrac{72^3.54^2}{108^4}\)
\(=\dfrac{18^3.4^3.18^2.3^2}{18^4.6^4}\)
\(=\dfrac{18^5.2^6.3^2}{18^4.2^4.3^4}\)
\(=\dfrac{18.2^2}{3^2}\)
\(=\dfrac{9.2.2^2}{9}\)
\(=2^3=8\)
\(D=\dfrac{72^3\cdot54^2}{108^4}=\dfrac{2^9\cdot3^6\cdot2^2\cdot3^6}{2^8\cdot3^{12}}=2^3=8\)
\(\dfrac{72^3.54^2}{108^4}\)
\(=\dfrac{2^9\cdot3^6\cdot2^2\cdot3^6}{2^8\cdot3^{12}}=2^3=8\)
Tính: B=72^3.54^2 phần 108^4
\(\frac{72^3.54^2}{108^4}=\frac{108^4.8}{108^4}=8\)
a, B=\(\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\) b, C=\(\dfrac{4^9.36+64^9}{16^4.100}\)
c, D=\(\dfrac{72^3.54^2}{108^4}\) d, E=\(\dfrac{4^6.3^4.9^5}{6^{12}}\)
a, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\dfrac{2^{10}.\left(13+65\right)}{2^8.2^3.13}\)
\(=\dfrac{2^{10}.78}{2^{11}.13}\)\(=\dfrac{1.6}{2.1}=\dfrac{1.3}{1.1}=3\)
b: \(=\dfrac{2^{20}\cdot3^2+2^{54}}{2^{18}\cdot5^2}=\dfrac{2^{20}\left(3^2+2^{32}\right)}{2^{18}\cdot5^2}=\dfrac{2^2\left(3^2+2^{32}\right)}{25}\)
c: \(=\dfrac{2^9\cdot3^6\cdot3^6\cdot2^2}{2^8\cdot3^{12}}=\dfrac{2^{11}}{2^8}=8\)
d: \(=\dfrac{2^{12}\cdot3^4\cdot3^{10}}{2^{12}\cdot3^{12}}=9\)
Tính :
a )\(A=\dfrac{72^3.54^2}{108^4}\)
b) \(B=\dfrac{3^{11}.11+3^{10}.5}{3^{10}.\left(11+5\right)}\)
\(A=\dfrac{72^3.54^2}{108^4}=\dfrac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\dfrac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\dfrac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
\(B=\dfrac{3^{11}.11+3^{10}.5}{3^{10}.\left(11+5\right)}=\dfrac{3^{10}\left(3.11+5\right)}{3^{10}\left(11+5\right)}=\dfrac{38}{16}=\dfrac{19}{8}\)
A=\(\frac{72^3.54^2}{108^4}\)
\(A=\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=\frac{2^{11}}{2^8}=2^3=8\)
Tính \(A=\frac{72^3.54^2}{108^4}\)
\(A=\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=\frac{2^3}{1}=8\)
\(A=\dfrac{27^3.54^2}{108^4}\)
\(A=\dfrac{27^3.54^2}{108^4}\)
\(=\dfrac{\left(3^3\right)^3.\left(3^3.2\right)^2}{\left(2^2.3^3\right)^4}\)
\(=\dfrac{3^9.3^6.2^2}{2^8.3^{12}}\)
\(=\dfrac{3^{15}.2^2}{2^8.3^{12}}\)
\(=\dfrac{3^3}{2^5}=\dfrac{27}{32}\)
Vậy A =\(\dfrac{27}{32}\)
Tính
\(\frac{72^3.54^2}{108^4}\)
\(=\frac{9^3.8^3.9^2.6^2}{9^4.3^4.4^4}=\frac{9^5.4^3.2^3.2^2.3^2}{9^4.4^4.3^4}\)\(=\frac{9.2^3.2^2}{4.3^2}=2^3=8\)
\(=\frac{9^3.8^3.9^2.6^2}{9^4.12^4}=\frac{9.4^3.2^3.3^2.2^2}{3^4.4^4}=\frac{9.2^3.2^2}{3^2.4}\) =23=8