Chứng minh với mọi số thực không âm thì thỏa mãn
\(a+b\ge2\sqrt{ab}\)
Cho \(a\), \(b\), \(c\) là 3 số thực không âm thỏa mãn: \(a+b+c=3\)
Tìm GTNN của biểu thức: \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
(mong mọi người giúp em bằng cách chứng minh dễ nhất với các bđt quen thuộc vd côsi, bunhia...., trừ khi nếu không thể ạ) Em cảm ơn ạ!
Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)
Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).
Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).
Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).
Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0
Tham khảo:
https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29
Với a;b;c là các số thực không âm, chứng minh rằng
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge2\left(a+b+c\right)\)
\(a^2+2b^2+ab=\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2\)
\(\Leftrightarrow\sqrt{a^2+2b^2+ab}=\sqrt{\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}\ge\sqrt{\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}=\frac{3}{4}\left(a+\frac{5}{3}b\right)\)
Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{3}{4}\left(b+\frac{5}{3}c\right),\sqrt{c^2+2a^2+ac}\ge\frac{3}{4}\left(c+\frac{5}{3}a\right)\)
Cộng lại vế theo vế ta được:
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge\frac{3}{4}\left(a+\frac{5}{3}b+b+\frac{5}{3}c+c+\frac{5}{3}a\right)\)
\(=2\left(a+b+c\right)\).
Dấu \(=\)khi \(a=b=c\ge0\).
Còn cách khác nè :
Đặt \(P=\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\)
Ta chứng minh \(P\ge2\left(a+b+c\right)\)
\(2P=\sqrt{\left(1+1+2\right)\left(a^2+2b^2+ab\right)}+\sqrt{\left(1+1+2\right)\left(b^2+2c^2+bc\right)}+\sqrt{\left(1+1+2\right)\left(c^2+2a^2+ac\right)}\)
Áp dụng bđt bunyakovsky ta được:
\(2P\ge a+2b+\sqrt{ab}+b+2c+\sqrt{bc}+c+2a+\sqrt{ac}\)
\(=3\left(a+b+c\right)+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\ge4\left(a+b+c\right)\left(AM-GM\right)\)
Suy ra \(P\ge2\left(a+b+c\right)\left(đpcm\right)\)
mọi người làm cách tối cổ quá , cách tổng quát luôn này
Ta cần cm \(\sqrt{xa^2+yab+zb^2}\ge ma+nb\)
Nếu \(x=z=>m=n=\frac{\sqrt{x+y+z}}{2}\)
Nếu \(x\ne z=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)
Áp dụng : \(\sqrt{a^2+ab+2b^2}\ge ma+nb\)
Với \(x=1;y=1;z=2\)
Vì \(x\ne z\)\(=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)
\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\m-n=-\frac{1}{\sqrt{4}}\end{cases}}\)
\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\2m=\sqrt{4}-\frac{1}{\sqrt{4}}\end{cases}}\)
\(< =>\hept{\begin{cases}m+n=2\\m=1-\frac{1}{4}=\frac{3}{4}\end{cases}}\)
\(< =>\hept{\begin{cases}m=\frac{3}{4}\\n=\frac{5}{4}\end{cases}}\)
Nên ta cần chứng minh \(\sqrt{a^2+ab+2b^2}\ge\frac{3}{4}a+\frac{5}{4}b\)
đến đây thì bình phương 2 vế rồi chuyển vế là được bđt đúng nhé
Cho các số thực a,b,c không âm thỏa mãn \(a+b+c=3\)
Chứng minh rằng: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
i don not no
câu này đơn giản quá, ko thích hợp vs người đẳng cấp như anh dây đâu
câu này ai giải đc cho tui 10000
Cho a,b,c là các số thực không âm thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\ge2\)
ta có :
\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^2}+\frac{b^3-a^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^3}+b-a\)
tương tự rồi cộng theo vế :
\(LHS\ge2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)
áp dụng bđt cô si
\(\frac{a^3}{a^2+ab+b^2}+\frac{a^2+ab+b^2}{9}+\frac{1}{3}\ge\frac{3a}{3}=a\)
tương tự rồi cộng theo vế
\(2\left(\frac{a^3}{a^2+ab+b^2}+...\right)\ge a+b+c-1-\frac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{9}\)
\(\ge\frac{2\left(9-a^2-b^2-c^2-ab-bc-ca\right)}{9}\)
đến đây chịu :)))))
\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)
Ta có BĐT phụ: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)( cái này nhân chéo lên tự cm nha )
\(\Rightarrow\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)
CMTT: \(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right);\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(c+a\right)\)
\(\Rightarrow VT\ge\frac{2}{3}\left(a+b+c\right)\ge\frac{2}{3}.3\sqrt[3]{abc}=2\left(đpcm\right)\)
Anh em cùng cha khác ông nội với Iran 96
Cho các số thực không âm thỏa mãn \(\frac{a}{b+c}\ge2\) Chứng minh rằng:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}\)
Mời mọi người :D
Chắc áp dụng BĐT AM-GM á
Bất đẳng thức sau đây đúng với mọi a, b, c không âm:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}+k\left(\frac{a}{b+c}-2\right)\)
với \(k=\frac{23}{25}\).
Note. \(k_{\text{max}}\approx\text{0.92102588865167}\) là nghiệm của phương trình bậc 5:
15116544*k^5+107495424*k^4-373143024*k^3+280903464*k^2+209797812*k-227353091 = 0
1.Cho a, b, c là các số không âm.
Chứng minh rằng:
\(a+b+c=\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(< =>a=b=c\)
2. cho a,b,c không âm
Cmr: \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
3. Cmr: với mọi số thực a, ta đều có:
\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)
Dấu = xảy ra khi nào
1/ Cho $$( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
P OI cai nay dung bat dang thuc co si do
Cho a,b,c,d là các số thực ko âm thỏa mãn (a+b+c)(b+c+d)(c+d+a)(d+a+b)>0
chứng minh rằng \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+d+c}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{b+a+c}}\ge2\)
\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)
=> VT >/ 2
Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)
\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)
\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)
Dấu '' = '' xảy ra khi a = b + c+ d
b = c+d+a
c = b+a+d
d = a+b+c
Hình như ko có a ; b; c ;d
CÂU 1 cho 3 số thực không âm a,b,c thỏa mãn (a+b)(b+c)(c+a) >0 . chứng minh \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\) \(_{\ge2}\)
CÂU 2 cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\) tìm giá trị lớn nhất của S = \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)